
An IDE for the Design, Verification and Implementation of Security Protocols

Rémi Garcia
Département Informatique

IUT de Bordeaux
Bordeaux, France

Email: remi.garcia@etu.u-bordeaux.fr

Paolo Modesti
Faculty of Computer Science

University of Sunderland
Sunderland, United Kingdom

Email: paolo.modesti@sunderland.ac.uk

Abstract—Security protocols are critical components for the
construction of secure and dependable distributed applications,
but their implementation is challenging and error prone.
Therefore, tools for formal modelling and analysis of security
protocols can be potentially very useful to support software
engineers. However, despite such tools having been available
for a long time, their adoption outside the research community
has been very limited. In fact, most practitioners find such
applications too complex and hardly usable for their daily
work. In this paper, we present an Integrated Development
Environment for the design, verification and implementation
of security protocols, aimed at lowering the adoption barrier
of formal methods tools for security. In the spirit of Model
Driven Development, the environment supports the user in
the specification of the model using the simple and intuitive
language AnB (and its extension AnBx). Moreover, it provides
a push-button solution for the formal verification of the abstract
and concrete models, and for the automatic generation of
Java implementation. This Eclipse-based IDE leverages on
existing languages and tools for the modelling and verification
of security protocols, such as the AnBx Compiler and Code
Generator, the model checker OFMC and the cryptographic
protocol verifier ProVerif.

Keywords-Security Protocols; Design; Verification; Imple-
mentation; Integrated Development Environment;

I. INTRODUCTION

The ubiquitous usage of information and communica-
tion technologies offers individuals and organisations an
enormous number of opportunities for business and social
interaction. However, it also poses significant risks and
threats since vulnerabilities can be exploited by attackers
to gain access to confidential data, and compromise the
integrity of connected systems. Many experts agree that
the root cause of vulnerabilities is incorrect software [1].
Security protocols play a key role in protecting user data
exchanged over a network infrastructure that can be as-
sumed to be under adversary control, as in the Dolev-
Yao attacker model [2]. However, programming security
protocols is challenging and error-prone, as experience has
shown that low-level implementation bugs are discovered
even in protocols like TLS and SSH, which are widely used
and thoroughly tested. Therefore, tools for formal modelling
and analysis of security protocols can be very useful to
support software engineers. Formal specification helps to

better understand system requirements, and a formal model,
suitable for automatic analysis, can detect inconsistencies
and requirements errors at an early stage of the development.
It is also cost effective as errors discovered at later stages
are generally more expensive to fix [3].

However, security requirements are particularly challeng-
ing because they need to consider the behaviour of an
active adversary. To help reasoning about the security prop-
erties, the specification of security protocols with high-level
programming abstractions, suited for security analysis and
automated verification, has been advocated by the formal
methods for security research community [4], [5]. This
was also one of the reasons for developing tools for the
verification of security protocols in the symbolic model
[6], [7], [8], and for the automatic generation of security
protocols implementations [9], [10], [11]. Despite such tools
having been available for a long time, their adoption outside
the research community has been very limited. In fact,
most practitioners find this kind of applications too complex
and hardly usable, including the difficulty to write and
understand the formal specification. For these reasons, they
are reluctant to use such tools for their daily work. In order
to lower the adoption barrier we advocate an approach based
on:

• a simple and intuitive language for the formal specifi-
cation of security protocols;

• a Model-Driven Development (MDD) strategy allowing
automatic generation of a program, from a simple and
abstract model that can be formally verified;

• an Integrated Development Environment supporting the
developer.

To demonstrate this approach, we present the AnBx-IDE1,
an Integrated Development Environment for the design,
verification and implementation of security protocols. This
Eclipse-based IDE leverages on existing languages and
tools for modelling and verification of security protocols,
such as the AnBx Compiler and Code Generator [10], for
the automatic generation of Java implementations from a
model described in the simple Alice & Bob (AnB) notation
[12] (or its extension AnBx [13]), and, for the automated

1Available at https://www.dais.unive.it/~modesti/anbx/ide/



Protocol: Example_AnBx
Types:

Agent A,B;
Certified A,B;
Number Msg;
SymmetricKey K;
Function [Agent,Number -> Number] log

Knowledge:
A: A,B,log;
B: B,A,log

Actions:
A -> B, @(A|B|B): K
B -> A: {|Msg|}K
A -> B: {|hash(Msg),log(A,Msg)|}K

Goals:
K secret between A,B
Msg secret between A,B
A authenticates B on Msg
B authenticates A on K
B authenticates A on Msg

Figure 1. AnBx Protocol Example

verification, the symbolic model checker OFMC [7] and the
cryptographic protocols verifier ProVerif [6].

The IDE, along with the interaction with the back-end
tools, includes many features meant to help programmers
to increase their productivity, like syntax highlighting, code
completion, code navigation and quick fixes.

The component responsible for the integration with
Eclipse [14] is a plug-in developed with XText [15], [16],
a framework for the design and implementation of Domain
Specific Languages (DSL). Given that the AnBx tool gen-
erates Java code, the choice of Eclipse, one of the most
popular IDEs among Java professional developers, is meant
to simplify the adoption among users familiar with it, but
we believe our approach is general enough to be applicable
also to other environments.

The outline of the paper is the following: in section II we
introduce the specification language and the back-end tools.
In section III we present the IDE construction and features.
Finally, in sections IV and V we report about our preliminary
evaluation and discuss the related and future work.

II. SPECIFICATION LANGUAGE AND BACK-END TOOLS

The IDE leverages on existing languages and tools for
modelling and verification of security protocols, such as
the AnBx Compiler and Code Generator, the model checker
OFMC and the cryptographic protocol verifier ProVerif. In
the spirit of MDD, the environment supports the user in the
specification of the model using the simple and intuitive lan-
guage AnB (and its extension AnBx). Moreover, it provides
a push-button solution for the formal verification of abstract
and concrete model, and for the automatic generation of Java
implementation.

Protocol: Example AnB
Types:

Agent A,B;
Number Msg,Nonce;
SymmetricKey K;
Function pk,sk,hash;
Function log

Knowledge:
A: A,B,pk,sk,inv(pk(A)),inv(sk(A)),hash,log;
B: A,B,pk,sk,inv(pk(B)),inv(sk(B)),hash,log

Actions:
A -> B: A
B -> A: {Nonce,B}pk(A)
A -> B: {{Nonce,B,K}inv(sk(A))}pk(B)
B -> A: {|Msg|}K
A -> B: {|hash(Msg),log(A,Msg)|}K

Goals:
K secret between A,B
Msg secret between A,B
A authenticates B on Msg
B authenticates A on K
B authenticates A on Msg
inv(pk(A)) secret between A
inv(sk(A)) secret between A

Figure 2. AnB Protocol Example

A. AnBx Language

The AnBx language is formally defined in [13] and is built
as an extension of AnB [12]. The main peculiarity of AnBx is
to use channels as the main abstraction for communication,
providing different authenticity and confidentiality guaran-
tees for message transmission. The translation from AnBx
to AnB, can be parametrised using different channel imple-
mentations, by means of different cryptographic operations.

Figure 1 shows an example protocol in which two agents
want to exchange securely a message Msg, using a freshly
generated symmetric key K, i.e. a key that is different for
each protocol run. If K is compromised, neither previous
nor subsequent message exchanges will be compromised,
but only the current one. This is similar to what happens
in TLS were a symmetric session key is established (using
asymmetric encryption) at the beginning of the exchange. It
should be also noted that this setting is also more efficient,
as symmetric encryption is notoriously much faster than the
asymmetric one. Therefore, if the size of the message is
significant, using symmetric encryption should be preferable.

The Types section includes declaration of identifiers of
different types, and functions declaration, while the section
Knowledge denotes the initial knowledge of each agent.
An optional section, Definitions, can be used to spec-
ify macros with parameters. In the Actions section, the
action A -> B,@(A|B|B):K means that the key K is
generated by A and sent on a secure channel to B. The
notation @(A|B|B)denotes the properties of the channel:
the message exchanged originates from A, it is freshly
generated (@), verifiable by B, and secret for B. How the
channel is implemented is delegated to the compiler. The



designer can select between different options, or simply use
the default one. This simplifies the life of the designer, who
does not need to be in charge of low level implementation
details. A translation to AnB is shown in Figure 2: in
this case the channel is implemented using a challenge-
response technique, where B freshly generates a Nonce
(the challenge), encrypted with pk(A), the public key of
A along with the sender name ({.} denotes the asymmetric
encryption). This guarantees that only A would be able to
decrypt the incoming message.

The response, along with the challenge, includes the
symmetric key K. The response is digitally signed with
inv(sk(A)), the private key of A and then encrypted with
pk(B), the public key of B. This will allow B to verify the
origin of the message and that K is known only by A and B.

It should be noted, that in AnBx we abstract from these
cryptographic details and we simply denote the capacity of
A and B to encrypt and digitally sign using a Public Key
Infrastructure (PKI) with the keyword Certified. This
reflects the customary practice of a Certification Authority to
endorse public keys of agents, usually issuing X.509 certifi-
cates, allowing every agent to verify the identity associated
with a specific public key. Moreover, in AnBx, keys for
encryption and for signature are distinguished by using two
different symbolic functions, pk and sk respectively.

Once the symmetric key K is shared securely between A
and B, then B can send the payload Msg secretly ({|.|}
denotes the symmetric encryption). Finally, A acknowledges
receipt, replying with a digest of the payload computed with
the hash function (a predefined function available in AnBx),
and with a value computed with the log function.

The section Goals denotes the security properties that
the protocol is meant to convey. They can also be translated
into low level goals suitable for verification with various
tools. Supported goals are: 1) Weak Authentication goals
have the form B weakly authenticates A on Msg
and are defined in terms of non-injective agreement [17]; 2)
Authentication goals have the form B authenticates
A on Msg and are defined in terms of injective agreement
on the runs of the protocol, assessing the freshness of the
exchange; 3) Secrecy goals have the form Msg secret
between A1,...,An and are intended to specify which
agents are entitled to learn the message Msg at the end of
a protocol run.

In the example protocol (Figure 1), the desirable goals
are the secrecy of the symmetric key K and of the payload
Msg that should be known only by A and B. There are
also authentications goals. B should be able to verify that K
originates from A and the key is freshly generated. Finally,
two goals express the mutual authentication between A and
B regarding Msg, including the freshness of the message.
In summary, this protocol allows two agents to securely
exchange a message, with guarantees about the origin and
the freshness of the message.

AnBx

AnB

Optimized Executable Narration

A -> B,(A|B|-): M

A -> B: {B,M}inv(sk(A))

A: send(B,sign((B,M),inv(sk(A)))

B: x:=receive()

B = proj[1](dec(x,sk(A)))

OFMC
verification

safe

channel implementation

generation of checks on reception

common subexpression elimination

check set refinement

unsafe

ATTACK

AnB-IF

Figure 3. Compiler front-end: pre-processing, verification, ExecNarr
optimization

Optimized Executable Narration

(application logic)
Application Template

Typed Optimized Exec. Narration

Code Generation

Generated Code AnBxJ Security Library
API

(protocol logic)

Type System

Java Runtime Environment Java Cryptography Architecture

concrete types and API calls

config file: network and crypto parameters

type inference / type checking

abstract types and API calls

verification

unsafe

ATTACK

safe

PROVERIF
applied-pi

Figure 4. Compiler back-end (Type System, Code generator, Verification)
and run-time support

B. AnBx Compiler and Code Generator

We briefly present the AnBx Compiler and Code Generator
by illustrating the main steps in the automatic Java code
generation of security protocols from an AnBx or AnB model
(Figure 3). A more detailed description is available in [10].

The input protocol is lexed, parsed and then compiled
to AnB, a format allowing the automated verification with
the OFMC model checker. If the verification is success-
ful, the AnB specification can be compiled into an exe-
cutable narration (ExecNarr), a sequence of actions that
operationally encodes how agents are expected to execute



the protocol. In particular, are computed the checks on
receptions, actions that agents have to perform on incoming
messages, in order to verify that the protocol is running
according to the specification. For example, verification of
digital signatures, decryption of incoming messages, equality
tests in order to check if the incoming message matches
the prior knowledge. Then, the sequence of actions can be
reordered (optimized executable narration (Opt-ExecNarr)
[18]) applying optimization techniques like the common
sub-expression elimination (CSE) in order to minimise the
number of cryptographic operations and reduce the overall
execution time.

The generation of the Java code requires a further step
(Figure 4). We model the protocol logic by means of a
language independent intermediate format called Typed-Opt-
ExecNarr, which is, in essence, a typed representation of the
Opt-ExecNarr, useful to parametrize the translation and to
simplify the emission of code in the concrete programming
language. The type system infers the type of expressions
and variables ensuring that the generated code is well-typed.
It has the additional benefit of detecting at run-time whether
the structure of the incoming messages is equal to the
expected one, according to the protocol specification.

The Java code emission is done by instantiating the pro-
tocol templates (application logic), i.e., the skeleton of the
application, using the information derived from the protocol
logic. It is worth noting that only at this final stage the
language specific features and their API calls are actually
bound to the protocol logic. The verification of the protocol
logic can be done with ProVerif, translating from the Typed-
Opt-ExecNarr to the Applied pi-calculus. [6].

In summary, ProVerif verifies the symbolic implemen-
tation from which the Java code is emitted, while OFMC
verifies the abstract model edited by the designer.

C. OFMC

OFMC [7] uses the AVISPA Intermediate Format IF [19]
as “native” input language. IF allows to describe security
protocols as an infinite-state transition system using set-
rewriting. OFMC also supports the AnB language. OFMC
performs both protocol falsification and bounded session
verification by exploring, in a demand-driven way, the
transition system. The major techniques employed by OFMC
are the lazy intruder, which is a symbolic representation of
the intruder, and constraint differentiation, which is a search-
reduction technique that integrates the lazy intruder with
ideas from partial-order reduction achieving a reduction of
the search space associated without excluding attacks (or
introducing new ones).

D. ProVerif

ProVerif [6] is an automated verifier for cryptographic
protocols, modelling the protocol and the attacker according
to the Dolev-Yao [2] symbolic approach, which in essence

represents data and ideal cryptographic operations symboli-
cally, assuming the attacker has complete control over public
communication channels. Differently from model checkers,
ProVerif can model and analyse an unbounded number of
parallel sessions of the protocol. However, like model check-
ers, ProVerif can reconstruct a possible attack trace when
it detects a violation of the intended security properties.
ProVerif may report false attacks, but if a security property
is reported as satisfied then this is true in all cases, so it is
necessary to analyse the results carefully when attacks are
reported.

III. INTEGRATED DEVELOPMENT ENVIRONMENT

A. Motivation

Despite not being strictly necessary to build programs,
Integrated Development Environments are not only useful to
increase productivity but also to lower the adoption barrier
for methodologies and technologies. In our case, while
working independently with the back-end tools is fine for
experts, our experience shows that new users, unfamiliar
with formal methods, languages and tools for security, may
face some difficulties. In particular, we rely on the second
author’s experience acquired supporting researchers using
such tools, and reflections made observing 3rd-year under-
graduate students at the University of Sunderland working
during tutorials on programming security protocols, where
some of these tools were employed.

Nowadays, most programmers expect development tools
to be supported by IDEs. Therefore, their integration, within
an environment they are familiar with, can make developers
more open and interested to adopt such tools. An IDE can
also greatly simplify the setup and configuration of the
environment, an issue that could deter new users.

There are also challenges for learners to deal with security
concepts. To counter this problem, an intuitive language
may help, but despite being considerably simpler than other
languages (e.g. the applied-pi calculus used by ProVerif),
AnBx/AnB can still present technical challenges to beginners.
Sometimes the difference between symmetric and asymmet-
ric encryption is not immediately understood. Additionally,
for asymmetric encryption, the usage of keys for different
purposes (i.e. encryption and signature) is crucial as key
material does not need to be confused [20]. Since AnB
lacks of function type signature, we prefer AnBx to allow
the IDE to check the arity and type of arguments while
editing. Regarding AnBx, the channel syntax (see Figure 1) is
compact and effective, but first time users need to assimilate
it. The IDE supports the user to overcome such difficulties.

In a nutshell, the main benefits of our IDE are:
• an integrated environment for the modelling, analysis,

and implementation of security protocols in an MDD
context;

• a simple intuitive input language (with syntactic sup-
port, type checking, etc.);



• push-button tool that integrates existing tools and sim-
plifies their usage;

• enabling a real-time modelling/verification feedback
cycle which is crucial to increase productivity.

B. XText

In order to support the AnBx modelling and the integration
of Eclipse with the back-end tools, we used Xtext [15], [16],
a standard framework for the development of programming
languages and domain-specific languages in the Eclipse
ecosystem, supported by an active community. It also allows
integration with IntelliJ and web browsers. By defining the
grammar of the language in the Extended Backus-Naur Form
(EBNF), Xtext provides a set of features including parser,
linker, type-checker, compiler as well as editing support
for Eclipse: handling of cross-references, code completion,
navigation, syntax colouring, validation and more. While the
default behaviour of Xtext is optimized to cover a wide range
of languages and use cases, every language is different and
consequently, also for AnBx, we needed to customize the
behaviour of various features, notably type-checking and
quick fixes provider.

C. Editing a project

In the rest of this section we refer to our example protocol
in Figure 1 and provide some examples of tool support for
editing, verifying, and running the protocols.

Before starting to write code, the user needs to run a
wizard, allowing to create an AnBx project with a few clicks,
by means of the File→New→Project menu commands.
A stub is generated, similar to the “Hello world” code in
others languages. Another wizard allows to create additional
AnBx files.

The editor supports the user in many ways. As mentioned,
by defining the grammar of the AnBx language, plus some
customisations, Xtext provides a fully fledged editor. We ex-
emplify here some features that are useful to avoid mistakes
in writing protocol specifications.

1. Context-dependent variables are a useful feature, for
the definitions of macros with parameters. Parameters allow
the user to produce a generic macro and call it with concrete
expressions as parameters, maximizing the code’s flexibility.
For example, in Figure 5, the Z parameter of Def1 is not
available outside its declaration.

Figure 5. Local variables’ UI consequences

2. The editor can help to avoid possible mistakes with the
AnBx channel’s syntax, a triple (auth|vers|dest). For example,

Figure 6. Auth and Verifiers checking

the auth parameter (the agent authenticating a message, e.g.,
with a signature) and the vers parameter (a set of agents, that
the auth intends to be able to verify the authenticity of the
message) can occur in a single channel mode only together,
but not alone (Figure 6).

3. The protocol in Figure 7 has two errors. The first one is
due to the fact that the auth parameter of the channel mode
must be of type Agent. The type checker returns the error
cause and provides two suggestions on how to resolve it. The
second error occurs because some cryptographic notations
are not legal. In fact, a challenge for a developer is to
figure out which encryption to use, in which situation. The
validation system guarantees the correctness of the types,
according to the cryptographic specification. The user is
trying to use a public key in a symmetric cipher scheme.
To fix the error the user has two possibilities: changing the
type of K to SymmetricKey or changing the encryption
scheme from symmetric to asymmetric. However, only in the
first case the protocol is safe, while in the second case there
is an attack. This can be determined verifying the protocol.

These three examples show how the IDE can help users
unfamiliar with cryptography to avoid design mistakes.

Figure 7. Error message and quick fix

Validation: In general, the IDE enforces several sanity
checks and signals their violation to the user. For example,
double declarations are forbidden and validation allows us to
check them. Moreover, the validation feature notably handles
arity of function calls and type-checking. For example. a



function signature like log : Agent, Number → Number will
be compared to its calls and will accept only Agent or
function returning an agent as first parameter. In the same
way, a log call can not be used as a parameter except if
the other signature expects a Number.

Quick fixes: Quick fixes are handled by Xtext when the
grammar specifies a strict requirement. For example, with
the channels notation, only a declared agent can be inside the
notation. Accordingly, a tooltip window appears to indicate
possible fixes as shown in Figure 7. While some fixes are
inferred from the grammar specification, others require a
specific customisation of the quick fix rules.

D. Integration with tools

1) Running tools: The integration of verification tools
allows the user to run common verification and code gen-
eration tasks with a few clicks. For example, the “Launch
associated validator” option triggers automatic verification
with OFMC or ProVerif, depending on the chosen out-
put format. It should be noted that enabling a real-time
modelling/verification feedback cycle is crucial to increase
productivity when dealing with complex protocols.

As the AnBx compiler allows users to generate a Java
implementation for the specified protocol, the code can auto-
matically run as soon as the code is generated. Alternatively,
the associated Java project can be opened in Eclipse and
built through an Ant file, a standard build file for the Eclipse
platform and other IDEs.

Thus, we cover the entire process of writing, running and
generating code within the same environment. Combining
a simple language with a simple interface enables the
developer to code and verify any protocol in a user-friendly
way, providing the necessary functions for a complete MDD
workflow.

2) Configuration of the cryptographic engine: Another
significant feature is the possibility to change the cryp-
tographic engine settings allowing to use different cipher
schemes and parameters without the need to regenerate or
recompile the application but simply editing the configura-
tion file. This can be useful when it is necessary to increase
the level of security of the cryptographic schemes in use.

IV. EVALUATION AND RELATED WORK

1) Evaluation: The plug-in is platform-independent and it
has been tested on Windows, Linux and Mac. Moreover, the
full protocol suite available with the AnBx compiler package
(50 protocols) has been successfully validated. Despite being
made available to users only very recently, the IDE has
been already used satisfactory by some security researchers
and post-graduate research students at the universities of
Newcastle and Sunderland. So far, their work involves
mostly modelling and verification of e-payment protocols.
While we had not performed yet a formal user evaluation,
a general appreciation was given to the simplicity of the

specification language and the user-friendliness of the IDE.
Anecdotally, we can report that a security researcher stated
that finally he could write his models with a language he
understands using the familiar Eclipse environment.

2) Related work: We share with the SPaCIoS tool [21]
the idea of providing support for the automatic verification
and validation of security properties, leveraging on existing
tools. However, while their range of supported tools is wider
than ours, it lacks (as it is left for a future work) a simpler
modelling language like the Alice & Bob notation. The
authors acknowledge that overcoming this limitation would
make the tool more suitable for practitioners. Moreover,
SpaCIoS focuses on the analysis and not on MDD.

SPI2JavaGUI [22]), along with the protocol verification
done by ProVerif, generates Java code from a graphical
model based on the Spi calculus. We share the MDD
approach, but our specification language is only textual.
Assessing which of the two approaches is more intuitive and
effective would require a specific investigation, but protocol
narrations like AnB are generally considered more intuitive
than process calculi.

Regarding the implementation of Eclipse-IDEs, [23] in-
corporates semantic verification techniques for DSLs defined
in Xtext. While Xtext offers good support for the DSL’s
syntax, semantics support has been rather neglected. As
a proof of concept this work considers a simple State-
Transition-DSL and the editor verifies on the fly, using
theorem prover Princess, that the model holds some semantic
properties. In our case, the editor offers a limited semantics
support, but all semantic features are available through to
the back-end tools, the AnBx compiler in particular. The
current limitation is that the user has to rely on the messages
displayed on the Eclipse console.

[24] proposes a general approach for integration of ver-
ification tools and IDEs. It focuses on the semi-automatic
verification tool KeY [25] for the Java language, with the
aim to keep implementation, specification and proofs in
sync. With respect to our IDE, a significant difference is that
here the developer works on the concrete Java code, while
we work on the abstract model which is remarkably simpler
than the implementation. In our case, however, we face
some challenges and limitations because of the gap between
the formal model and the concrete verified model. For
example, OFMC translates AnB to IF, and checks the IF state
transition system, and see if an attack state can be reached.
OFMC is able to tell which kind of property is violated
(Authentication, Weak Authentication, Secrecy), providing
an attack trace, but does not tell which goal is violated.
Therefore, it is not easy to backtrack to the abstract model
and inform the user about the specific violated goal. Instead,
ProVerif provides information about every goal, and in the
future we could annotate the AnBx compiler translation
process to be able to trace back the tool’s messages from
the concrete to the abstract model.



V. FUTURE WORK AND CONCLUSION

We think that our IDE for the design, verification and
implementation of security protocols may be of interest, not
only to security researchers, but also to practitioners. We also
believe that the approach is general enough to be applicable
to other IDE platforms. In order to support new languages,
our IDE can be extended but the amount of work will depend
on the specific nature of the language. New verification tools
could be also added either by extending our back-end tool
(AnBx compiler) or integrating directly an existing compiler
supporting the verification tool (similarly to what done
for OFMC and ProVerif). However, a significant challenge
will be proving the correctness of the translation between
different formats.

We plan to overcome some of the limitations discussed
above, in particular, working on the interpretation of analysis
results, having a further integration with the verification
tools and backtracking error messages to the source code
of the model. Moreover, we could run a formal evaluation
of the user experience with the IDE and extend the range of
supported tools and input languages.

ACKNOWLEDGEMENT

Rémi Garcia was supported by the EU Erasmus Pro-
gramme during his visit at the University of Sunderland. The
authors would like to thank Leo Freitas and the anonymous
reviewers for their constructive comments.

REFERENCES

[1] M. Dark, S. Belcher, M. Bishop, and I. Ngambeki, “Practice,
practice, practice... secure programmer!” in Proceeding of the
19th Colloquium for Inf. System Security Education, 2015.

[2] D. Dolev and A. Yao, “On the security of public-key pro-
tocols,” IEEE Transactions on information Theory, vol. 2,
no. 29, 1983.

[3] I. Sommerville, Software Engineering, 9th edition. Addison-
Wesley, 2010.

[4] M. Bugliesi and R. Focardi, “Language based secure com-
munication,” in Computer Security Foundations Symposium,
2008. CSF’08. IEEE 21st, 2008, pp. 3–16.

[5] M. Avalle, A. Pironti, and R. Sisto, “Formal verification of
security protocol implementations: a survey,” Formal Aspects
of Computing, vol. 26, no. 1, pp. 99–123, 2014.

[6] B. Blanchet, “An efficient cryptographic protocol verifier
based on Prolog rules,” in Computer Security Foundations
Workshop, IEEE. IEEE Computer Society, 2001.

[7] D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A sym-
bolic model checker for security protocols,” International
Journal of Inf. Security, vol. 4, no. 3, pp. 181–208, 2005.

[8] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin
prover for the symbolic analysis of security protocols,” in
International Conference on Computer Aided Verification.
Springer, 2013, pp. 696–701.

[9] M. Avalle, A. Pironti, D. Pozza, and R. Sisto, “JavaSPI: A
framework for security protocol implementation,” Interna-
tional Journal of Secure Software Engineering, vol. 2, no. 4,
pp. 34–48, 2011.

[10] P. Modesti, “AnBx: Automatic generation and verification
of security protocols implementations,” in 8th International
Symposium on Foundations & Practice of Security, ser.
LNCS, vol. 9482. Springer, 2015.

[11] O. Almousa, S. Mödersheim, and L. Viganò, “Alice and
Bob: Reconciling formal models and implementation,” in
Programming Languages with Applications to Biology and
Security, ser. LNCS. Springer, 2015, vol. 9465, pp. 66–85.

[12] S. Mödersheim, “Algebraic properties in Alice and Bob nota-
tion,” in International Conference on Availability, Reliability
and Security (ARES 2009), 2009, pp. 433–440.

[13] M. Bugliesi, S. Calzavara, S. Mödersheim, and P. Modesti,
“Security protocol specification and verification with AnBx,”
Journal of Information Security and Applications, vol. 30, pp.
46–63, 2016.

[14] Eclipse Foundation, “Eclipse IDE,” http://www.eclipse.org.

[15] L. Bettini, Implementing domain-specific languages with
Xtext and Xtend. Packt Publishing Ltd, 2016.

[16] Eclipse Community, “Xtext documentation,” 2017,
http://eclipse.org/Xtext/documentation/.

[17] G. Lowe, “A hierarchy of authentication specifications,” in
CSFW’97. IEEE Computer Society Press, 1997, pp. 31–43.

[18] P. Modesti, “Efficient Java code generation of security proto-
cols specified in AnB/AnBx,” in Security and Trust Manage-
ment, STM 2014, Proceedings, 2014, pp. 204–208.

[19] AVISPA, “Deliverable 2.3: The Intermediate Format,” 2003,
available at www.avispa-project.org.

[20] M. Abadi and R. Needham, “Prudent engineering practice for
cryptographic protocols,” in IEEE Computer Society Sympo-
sium on Research in Security and Privacy, 1994, pp. 122–136.

[21] G. Pellegrino, L. Compagna, and T. Morreggia, “A tool
for supporting developers in analyzing the security of web-
based security protocols,” in IFIP International Conference
on Testing Software and Systems. Springer, 2013.

[22] P. B. Copet, A. Pironti, D. Pozza, R. Sisto, and P. Vivoli, “Vi-
sual model-driven design, verification and implementation of
security protocols,” in High-Assurance Systems Engineering
(HASE),14th International Symposium on. IEEE, 2012.

[23] T. Baar, “Verification support for a state-transition-dsl defined
with Xtext,” Perspectives of System Informatics, Jan. 2016.

[24] M. Hentschel, S. Käsdorf, R. Hähnle, and R. Bubel, “An
interactive verification tool meets an ide,” in International
Conference on Integrated Formal Methods. Springer, 2014.

[25] B. Beckert, R. Hähnle, and P. H. Schmitt, Verification of
object-oriented software: The KeY approach. Springer, 2007.


