Newcastle
+ University

COMPUTING
SCIENCE

Efficient Java Code Generation of Security Protocols Specified in
AnB/AnBx

Paolo Modesti

TECHNICAL REPORT SERIES

No. CS-TR-1422 May 2014

TECHNICAL REPORT SERIES

No. CS-TR-1422 May, 2014

Efficient Java Code Generation of Security Protocols
Specified in AnB/AnBx

P. Modesti
Abstract

The implementation of security protocols is challenging and error-prone, as
experience has proved that even widely used and heavily tested protocols like TLS
and SSH need to be patched every year due to low-level implementation bugs. A
model-driven development approach allows automatic generation of an application,
from a simpler and abstract model that can be formally verified. In this work we
present the AnBx compiler, a tool for automatic generation of Java code of security
protocols specified in the popular Alice & Bob notation, suitable for agile
prototyping. In contrast with the existing tools, the AnBx compiler uses a simpler
specification language and computes the consistency checks that agents has to
perform on reception of messages. This is an important feature for robust
implementations. Moreover, the tool applies various optimization strategies to
achieve efficiency both at compile time and at run time. A support library interfaces
the Java Cryptographic Architecture allowing for easy customization of the
application.

© 2014 Newcastle University.

Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

MODESTI, P.

Efficient Java Code Generation of Security Protocols specified in AnB/AnBx
[By] P. Modesti

Newcastle upon Tyne: Newecastle University: Computing Science, 2014.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1422)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1422

Abstract

The implementation of security protocols is challenging and error-prone, as experience has proved that even
widely used and heavily tested protocols like TLS and SSH need to be patched every year due to low-level
implementation bugs. A model-driven development approach allows automatic generation of an application, from
a simpler and abstract model that can be formally verified. In this work we present the AnBx compiler, a tool for
automatic generation of Java code of security protocols specified in the popular Alice & Bob notation, suitable for
agile prototyping. In contrast with the existing tools, the AnBx compiler uses a simpler specification language and
computes the consistency checks that agents has to perform on reception of messages. This is an important feature
for robust implementations. Moreover, the tool applies various optimization strategies to achieve efficiency both
at compile time and at run time. A support library interfaces the Java Cryptographic Architecture allowing for
easy customization of the application.

About the authors

Paolo Modesti is a Research Associate at the Newcastle University, UK. His main research interests are languages
and tools for security, applied formal methods for security, and automatic code generation. He has worked as a
senior IT officer for the Italian Revenue Agency, as an IT Security Adviser for the EU-Cafao mission in Bosnia
and Herzegovina, and as a Computer Science teacher for several high schools in Italy. Paolo holds a Ph.D. in
Computer Science from Ca' Foscari University Venice, Italy (2012), a Master in Software Engineering (1999)
from Serc (USA)-Tecnopadova (Italy) and a M.Sc. in Computer Science from University of Udine, Italy (1990).

Suggested keywords

SECURITY PROTOCOLS
JAVA CODE GENERATION
APPLIED FORMAL METHODS

Efficient Java Code Generation
of Security Protocols specified in AnB/AnBx

Paolo Modesti

School of Computing Science, Newcastle University, UK
paolo.modesti@newcastle.ac.uk

Abstract. The implementation of security protocols is challenging and error-prone, as experience
has shown that even widely used and heavily tested protocols like TLS and SSH need to be patched
every year due to low-level implementation bugs. A model-driven development approach allows the
automatic generation of an application, from a simpler and abstract model that can be formally
verified. In this work we present the AnBx compiler, a tool for automatic generation of Java code of
security protocols specified in the popular Alice & Bob notation, suitable for agile prototyping. In
contrast with existing tools, the AnBx compiler uses a simpler specification language and computes
the consistency checks that agents have to perform on reception of messages. This is an important
feature for robust implementation because it enforces the run-time behavior of the application.
Moreover, the tool applies various optimization strategies to achieve efficiency both at compile
time and at run time. A support library interfaces the Java Cryptographic Architecture allowing
for easy customization of the application.

1 Introduction

The implementation of security protocols is challenging and error-prone, as experience has shown [1,2,3,4]
that even widely used and heavily tested protocols like TLS and SSH need to be patched every year due
to low-level implementation bugs. Moreover, the recent “Heartbleed” bug of OpenSSL [5] and the “goto
fail” bug of the Apple TLS implementation [6] have shown that missing (or untested) checks, hidden
deep in the code, may have a severe impact. In general, manual implementation of security protocols is
prone to errors and one may easily raise the question about how many unknown bugs are just waiting to
be discovered and exploited by malicious users in such harmful code. The critical aspect is that the high-
level security properties of a protocol must be hard-coded explicitly, in terms of low-level cryptographic
operations and checks of well-formedness.

To counter this problem, it may be useful to consider a model-driven development approach that allows
automatic generation of an application, from a simpler and abstract model that can be formally verified.
In this work we present the AnBx Compiler and Code Generator, a tool for automatic generation of Java
code of security protocols specified in the popular Alice & Bob notation, suitable for agile prototyping.

From the design perspective, working on a simplified abstract model has proven very effective. It not
only allows reasoning about the high-level security property, abstracting from the low-level details of the
cryptographic implementation, but it also helps to reduce the problem to a size that can be handled
efficiently by automatic verification tools [7,8,9,10].

Although formal languages and calculi, such as the SPI calculus [11], have been created to model
security protocols, their use among code developers remains negligible due to their complexity. Instead
protocol narrations, like the Alice €& Bob notation [12], are still a very popular way to describe security
protocols as a sequence of message exchanges among different principals. However, despite being intuitive,
this specification technique is semi-formal because it contains a lot of implicit concepts. In particular, it
does not say explicitly which (defensive) consistency checks on the received data need to be performed
to verify that the protocol is running according to the specification. This fact cannot be neglected when
translating narrations to real programming languages, because otherwise it would lead to incomplete and
intrinsically weak implementations.

It is important to recognize that while some checks on reception are trivially derived from the narra-
tions (verification of a digital signature, comparison of agent’s identities), others are more complex. For
example in the 3KP e-commerce protocol [13] the acquirer A needs to perform a lot of different checks
to verify the consistency of the information provided by the customer C and the merchant M, before

authorizing a credit card transaction. These checks require the comparison of hash and MAC values
computed on complex data structures on which cryptographic operators are applied. For example:

decsk(c) (7T10(R)) = hash(ﬂg(y), hash(m (Z), ’/Tl(R), 7T2(R), 7T3(R), hmaCK(ng(Z), 71'7(R), 7T5(R), 7T6(R)))

where R is the variable binding the message received by A originating from M, y = decgy(ar)(m9(R)),
2 = deCinypr(a)) (m2(R)), K = m4(ma(z)), m; is the projector operator, dec is the decryption function,
sk(C) and sk(M) are the public keys of customer and merchant used by A to verify their digital signatures
and inv(pk(A)) is the private key the acquirer uses to decrypt.

Such checks cannot be easily derived by hand, given that in theory in 3KP there are more than 10,000
possible different equality checks, as computed by the algorithm described in [14], that can be done by
the acquirer. The good news is that they can be reduced to just a couple of dozen with an appropriate
modelling of the cryptographic primitives, reordering and variable substitutions, with the added benefit
of improving the efficiency of the application. Therefore, an intelligent organization of checks has a strong
impact, but managing such complexity is a challenging task even for an expert programmer.

Indeed, the automatic generation of code from an abstract model is a strategy that has been already
applied by different tools [15,16,17,18,19]. However, we found two aspects unsatisfactory: all the tools
require the manual coding of the checks on reception and with a few exceptions (but still requiring
annotations to generate running code), they do not use an Alice & Bob style specification language.
Our AnBz Compiler and Code Generator is, to the best of our knowledge, the first available tool that
combines these features:

— it automatically and explicitly computes the checks on reception.

— it uses a simple specification language like AnB [12] that is suitable for a large audience of developers
and can be easily used for both formal verification with automatic tools and agile prototyping of
the real implementation. The tool also supports the AnBz language [20], an extension of AnB to
be employed for a purely declarative modelling of distributed protocols. These abstractions provide
a compact specification of the high-level security guarantees they convey, and help to shield the
designer from the details of the underlying cryptographic infrastructure.

— it applies optimization techniques to efficiently generate the implementation of industrial-size proto-
cols, for instance SET [21] and iKP [13].

— it applies optimization techniques, such as common subexpression elimination (CSE), to improve
the execution speed of the generated application, avoiding the repetition of the same cryptographic
operations which are computationally expensive.

— it generates runnable Java code which interfaces, by means of a support library, the Java Crypto-
graphic Architecture (JCA) [22,23] , directly from the AnB specification. We do not use annotations
but only a few simple naming conventions that are used to map the AnB types to concrete Java
types.

— it allows for flexible customization (by means of application templates and configuration files) of the
generated application.

— it works for an entire protocol suite (more than 40) and not just on few examples. The suite includes
complex protocols like SET, iKP, Kerberos, ISO H530, Google SSO and others, many of them derived
from the AnB examples included in the OFMC model-checker [8].

Beyond the main contribution of an end-to-end AnBzx to Java compiler, we have a number of further
contributions:

— there is an improved way to compute the checks on reception with respect to a previous solution
proposed by Briais and Nestmann [14]. This allows reducing the compilation time (in one case even
from days to seconds), preventing space state explosion problems in the optimization phase, and
increasing the execution speed. No previous research has been conducted on this issue.

— there is an effective compiling strategy that tries to maintain the pure and simple representation of the
abstract protocol longer through the compilation process. This helps to control the complexity [24]
and hide the implementation details until the code emission. One advantage of this compiling strategy
is the possibility of using serialization as a method to get standard compliant and interoperable wire-
format as in [18].

AnBx

A ->B, (AIB|-): M

channel implementation

erificati unsafe
AnB | verification - = —> ATTACK
A -> B: {B,M}inv(sk(A))

generation of checks on reception

common subexpression elimination

check set refinement

Optimized Executable Narration
A: Blenc(<B,m>,priv(ska))

B: 2VAR_B 0

B = [1][dec (VAR _B_0,pub (ska))]

Fig. 1. Compiler front-end: pre-processing, verification, optimization of the ExecNarr

— there is an efficient albeit lightweight solution to check whether the formats of the incoming messages
are correct, using a type system together with the native mechanisms of Java, namely casting and
serialization.

— there is evidence of effectiveness of the AnBz language in coding revised versions of complex protocols
such as iKP and SET.

In summary we present an end-to-end AnBz to Java compiler, which computes efficiently the checks on
receptions and applies optimization strategies to generate fast code.

Plan of the paper In §2 we present the architecture of the AnBx Compiler and Code Generator. In §3 and
84 the translation into the intermediate format (executable narration) is described and the experimental
results of some optimization strategies are discussed. In §5 we show how the executable narration is
translated into Java code and its automatic generation. In §6 we illustrate the security library which
wraps the JCA. In §7 we conclude and discuss related and future work.

2 Architecture of the AnBx compiler

The automatic Java code generation of security protocols specified in AnBxz or AnB comprises several
phases. A global view of the tool, which is developed in Haskell, is shown in Figures 1 and 2 and can be
summarized as follows:

Pre-Processing and Verification AnBz — AnB — (verification)

The AnBz protocol is lexed, parsed and then compiled to AnB [12], a format suitable for verification
with the external tool OFMC [8], a state of the art model checker which is part of the AVISPA [25]
and AVANTSSAR [9] platforms. The compiler can also read protocols directly in AnB. AnBz and its
translation to AnB have already been described in other works [20,26,27,28] and we refer the reader to
them. We just point out that translation from AnBz to AnB can be parametrized using different channel
implementations which realize the security properties, specified at the channel level, by means of different
cryptographic operations.

Front-end AnB — EzecNarr — Opt-ExecNarr

After the verification, if the protocol is deemed safe, the AnB specification can be compiled into an
executable narration (ExecNarr), a set of action that gives an interpretation on how the protocol partici-
pants are supposed to execute the protocol. The core of this phase (§3) is the automatic generation of the
consistency checks derived from the static information of protocol narrations. The underlying theory is

Optimized Executable Narration

from AnB

JProtocol

(protocol logic) Type System

type inference / type checking

abstract types | and API calls

Application Template

Code Generation (application logic)

concrete types | and API calls

API
Generated Code Security Library

Java Runtime Environment Java Cryptographic Architecture

Fig. 2. Compiler back-end (Type System and Code generator) and run-time support

a formal operational semantics for protocol narrations, proposed by Briais and Nestmann [14].Since the
language features considered in [14] are insufficient to model many real protocols (and even less expres-
sive than those available in AnB) we extended the executable narration semantics to support MACs, key
agreements (i.e Diffie-Hellmann), tuples and user-defined functions. In this way it is possible to model a
wider and more realistic range of applications. The checks are expressed by means of consistency formulas,
and given the high number of generated formulas, the tool applies some simplification strategies which
offer good results in practice. In the original proposal [14] some simplification was already implemented
but this turned out to be insufficient to deal with some large protocols. We changed the rule of analysis
and synthesis applied to messages and expressions in order to improve the computation of checks and
prune the checks that were inconsistent with the behavior of the cryptographic functions used in the
implementation.

The optimized executable narration (Opt-ExecNarr) (84) goes further in this direction and applies
some optimization techniques, including common subexpression elimination (CSE), which in general
are useful to generate efficient code. We identify the set of cryptographic operations, which in general
are computationally expensive, and optimize the code to reduce the overall execution time, introducing
variables storing partial results, and making a reordering with the purpose of minimizing the number
of cryptographic operation performed. An additional option offered by the reordering made during the
CSE, is the possibility to prune the check set. In fact, provided the success of a predecessor check that
compares a variable with an expression, it is safe to substitute the occurrences of the expression with
the variable in the subsequent checks, dropping the duplicated checks.

Back-end Opt-EzecNarr — (protocol logic) + (application logic) — Java

The final result of the compilation is the generation of the Java source code from the Opt-ExecNarr.
The previous phases are fully language independent and do not require any adaptation in case another
programming language is considered. But even in the back-end we postponed any language dependent
decision in order to increase the compiler’s portability and simplify re-targeting, as long as other object
oriented and procedural programming languages are considered. Moreover, we designed a versatile tool
that allows for a wide range of user customizations. The details of the compiler back-end are presented
in Section 5. Here we summarize the main features and components:

Code generation strategy First of all, we make a distinction between the protocol logic and the appli-
cation logic. The latter is implemented by means of parametrized application template files written in the
target language. The templates are instantiated with the information (the protocol logic) derived from
the optimized executable narration. We model the protocol logic by means of a language independent

Protocol: Fresh_From_A
Types:
Agent A,B;
Number Msg,Nonce;
Function pk,sk,hash
Knowledge:
A: A,B,pk,sk,inv(pk(A)),inv(sk(A));
B: A,B,pk,sk
Actions:
A -> B: A
B -> A: {Nonce,B}pk(A)
A -> B: {Nonce,B,Msgltinv(sk(A))
Goals:
B authenticates A on lMsg

Fig. 3. A challenge-response implementation in AnB of fresh authentic exchange

intermediate format called JProtocol, which is basically a typed representation of the Opt-EzecNarr.
This is useful to parametrize the translation and to make easier to emit code in other programming
languages.

Type System Building the JProtocol requires a type system modeling a typed abstract representation
of the security related portion of a generic procedural language supporting a rich set of abstract cryp-
tographic primitives. The type system is used to infer the type of expressions and variables and insures
that the generated code is well-typed. It has the additional benefit to detect at run time if the structure
of the incoming messages is coherent with the one specified by the narration. We delegate to the Java
run-time support to check whether the incoming messages belong to the expected class and, in the case
of detection of an error, a ClassCastException is raised. In our approach, we found this to be the proper
level to handle this problem, avoiding to overload the abstract model with additional implementation
details (i.e., annotations). The types, the typing rules, and the naming conventions mapping the AnB
types to concrete Java types are shown in Section 5.2. The type checker also detects the correct use of
the naming convention.

Security API The run-time support relies on the the cryptographic services offered by the Java
Cryptographic Architecture (JCA) [22,23]. In order to connect to the JCA, we designed an API for
security (Section 6) which wraps, in an abstract way, the JCA interface and implements the custom classes
necessary to encode the generated programs in Java. The AnBzJ library offers a high degree of generality
and customization, since the API does not commit to any specific cryptographic solution (algorithms,
libraries, providers). Moreover, the library provides access in an abstract way to the communication
primitives used to exchange messages in the standard TCP/IP network environment. Communication
and cryptographic run-time errors are handled at this level, and exceptions are raised. The generated
code comes along with a configuration file that allows the developer to fully customize the deployment
of the application at the cryptographic (keystore location, aliases, cipher schemes, key lengths, etc) and
network level (IP addresses, ports, etc) without requiring to regenerate the application.

Code emission The code emission is performed by instantiating the protocol templates, i.e., the
skeleton of the application, with the information derived from the protocol logic (Section 5.4). It is
worth noting that only at this final stage the language specific features and their API calls are actually
bound to the protocol logic. To this end two mappings are required. One between the abstract and the
concrete types; another one between the abstract actions and the concrete API calls. It is important to
underline that the application templates are generic, i.e., independent from the specific protocol, and
can be modified by the user in order to fit his application domain. An Ant [29] build file is generated to
easily build and run the application, in addition to the Java classes and a configuration file. In summary,
the tool allows for a one-click code generation of widely configurable and customizable ready-to-run Java
applications from an AnBz or AnB specification.

3 Compiling AnB/AnBzx into Executable Narrations

We now describe how protocols in AnB and AnBz can be compiled into EzxecNarr. The goal is to
obtain an operational description of the actions each agents has to perform, including the informative
checks on reception of messages. This process involves modeling the agent’s knowledge, mapping the

AnB actions to the EzecNarr format and computing the checks. The major difference between the two
specifications is that AnB describes the ideal running of the protocols showing the messages exchanged
by the agents from the point of view of an external observer, while the executable narration describes
operationally the actions performed from the point of view of each agent. This is evident considering
the different perspective of an AnB action like B->A: {Nonce,B}pk(A), as in the protocol in Figure 3.
From the operational point of view of the Agent B, this correspond to construct an expression with two
components {Nonce,B}, then encrypt it with the public key of A and send the ciphertext to the agent
A. On the other end of the communication link, from the point of view of A, this action corresponds to
receiving a value which can be stored in a variable R1. Then A has to deconstruct R1 performing the
decryption with her private key and verifying whether the second component of the plaintext correspond
to the identity of B that she has stored in her knowledge.

3.1 The AnB language

An example of a simple AnB protocol is given in Figure 3. Its goal is to allow a fresh authentic exchange of
the message Msg between two parties using challange-response. The language description and the formal
semantics is available in [12]. For simplicity, here we skip some details but before proceeding it is useful
to recall that a protocol specification in AnB comprises of four mandatory sections:

— Types: describes the principals (Agent) involved in the protocol, along with protocol data (Number)
and operators on them (Function), including the cryptographic functions for signing (sk) and en-
crypting (pk) using public key cryptography and an hash function (hash);

— Knowledge: specifies the initial knowledge of each principal. The original specification of AnB permits
inclusion of agents names, constants, functions, and their combination, but not freshly generated
values because they are created during the protocol execution. This poses a problem in protocols
where the agents have to use a symmetric pre-shared key or, like in the e-commerce protocols iKP
[30,13] and SET [31], where the description of the payment process, assumes that the price and
the order details have been already agreed between the customer C' and the merchant M before
the protocol execution. This schema is supported by AnBxz by means of a new construct in section
Knowledge allowing the specification of values shared among a set of agents as in the statement C,M
share Price,Desc, which models the aforementioned scenario;

— Actions: specifies the sequence of statements that constitute the ideal run of the protocol;

— Goals: specifies the goals that the protocol is meant to convey. These are useful for the verification
of the protocol but are not used to generate the executable narration.

Now we show how to translate an AnB protocol to an executable narration.

3.2 The executable narration syntax

In the target format (the syntax is shown in Table 1), the protocol is composed of two sections, a
declaration, a header of the actual narration, which includes the initial knowledge of each agent, the
names generated by them and the names that are assumed to be initially known only by a subset of
agents. The latter is similar to the share construct we introduced in AnBz.

The agents are taken from set of agent names A and the messages are built upon set of names N. It
is assumed that AN = @.

To handle asymmetric cryptography, the inverse key inv(M) of a message M is defined as follows:

pub(M') if M = priv(M’)
inv(M) = S priv(M') if M = pub(M’)

1L otherwise

The agents can verify if two messages M7 and M, are inverse keys one of each other, trying to decrypt
with Ms a message encrypted with M; and conversely.

The statement private k means that k is a name which is initially only available for the agents
involved in the protocol. For instance, this is useful to simulate that an agent A and a server .S initially
share a secret key kAS:

exrpressions

E F:=a name
| A agent name
| = variable
| hash(E) hashing
| pub(E) public key
| priv(E) private key
| (Eh,...,En) tuple *
| mi(E) i — th projection *
| enc(E,F) asymmetric encryption
encS(F, F) symmetric encryption ™
| dec(E,F) decryption
| hmac(E, F) hmac*
| kap(E,F) key agreement hal f key ™
| kas(E,F) key agreement full key *
| E(F) Sfunction ™
formulae
¢ = [E=F] matching
| [E:M] well — formedness test
| inv(E,F) inversion test
simple actions (A, B are agent names)
I:=A:newk fresh name generation
| A:send(B,E) message emission
| A:receive(r) message reception
| Aiz:=F assignment
| A:¢ check
narrations
L:=c¢ empty narration
| I;L non empty narration
declarations

D ::= Aknows M initial knowledge
(M is a ground expression)
| A generatesn freshname generation
| privatek private name
protocol narrations
P:=D;P|L declarations + narration

Table 1. Syntax of the executable narrations (Extensions with respect to [14] are marked with *. However, when
computing checks, as in [14], pairs are used instead of tuples * for performance reasons.)

private kAS
A knows kAS
S knows kAS

A knows m denotes that, initially, the agent A knows the message m. The statement A generates
n implies that the agent A generates a fresh name n (a nonce or a freshly generated key). All fresh
names must be declared explicitly. Deriving the declaration section from the AnB agent’s knowledge is
straightforward (see [26]).

The meaning of actions in section narration is intuitive. A — B : M denotes that the agent A sends
a message M to the agent B. A prerequisite here is to translate the AnB to a format (2) compatible
with the definition of expressions in the executable narrations. This is because one of the goal of this
phase is to derive the expression that map messages from the agent’s point of view. Again the mapping of
messages is quite straightforward and implies the definition of a function 7 : M a,g — M that translate
of AnB messages to their equivalent, where M a,g and M are the sets of messages in the two formats
(Table 3). To compute 7, we also need the type information available from the protocol header. Each
AnB action on a plain channel A — B : M is simply translated to an equivalent action A — B : 7 (M).

messages M

M,N :=a name
A agent name
hash(M) hashing
pub(M) public key
priv(M) private key

|

|

|

|

| (M.N) pair
| enc(M,N) asymmetric encryption

| encS(M,N) symmetric encryption *

| hmac(M,N) hmac*

| kap(M,N) keyagreement half key *
| kas(M,N) keyagreement full key *
| M(N) Sfunction ™

Table 2. Syntax of Messages for the protocol narrations (plus extensions *)

7(-): ManB — {L} UM

7 (a) := toUpper (a) if a € Agent
7 (a) := toLower (a) if a € Ident A a ¢ Agent
7 ({m},) = enc(r (m),7 (k))
7 ({Iml},) = encS (r (m), 7 (k))
7 (op (a)) := pub (op+ 7 (a)) if a € Agent A op € Function
A op € {pk, sk}
7 (inv (op (a))) := priv (op + 7 (a)) if a € Agent A op € Function
A op € {pk, sk}
7 (exp(g,x)) := kap (7 (9), 7 (z)) if g, € Number
7 (eap (explg, 7)) = kas (kap (7 (g) , 7 () ,7 (4)) if 9,2,y € Number
7 (hmack (m)) := hmac (7 (m), 7 (k)) if k € Symmetric_key
7 (hash (m)) := hash (1 (m))
7(f (z)) == F (7 (2)) ifT(f)=F €M A f € Function
T(E):=1 otherwise

Table 3. Translation of AnB messages to executable narrations (+ is the concatenation of names)

In contrast to the original work [14], we found more convenient, for efficiency reasons we are going
to detail later, to distinguish between symmetric and asymmetric encryption. Moreover, we introduced
the support of operators like hmac, kap, kas and user defined functions. kap and kas are used to model
the basic operations on keys which are available in key agreement protocols like Diffie-Hellman. These
functions are borrowed from [32] (we explicit here the parameter g because it is necessary in the next
steps of the compilation):

— kap(g,x) is the half key computed from secret x;
— kas(k,y) is the full key computed from an half-key k and a secret y.

They satisfy the algebraic property kas(kap(g,x),y) =~ kas(kap(g,y), x), given the pre-shared parameter
g.

3.3 Compiling Protocol Narrations

Having completed the previous steps it is now possible to compute the checks on reception applying the
ideas proposed by Briais and Nestmann [14]. In this section we summarize their approach. Then AnB
actions are decomposed making the behavior of every single agent more explicit. Atomic exchanges of
the form A — B : M can hence be compiled to more specific basic actions:

emission A: send(B, E) of a message expression E (evaluating to M);
reception B : x := receive() of a message and its binding to a variable x;

[1:E—={l}uM

[E] = F ifEE€NUA
[(E.F)] == ([E].[F])
[r(B)] =M if [E]=(M.N)eM
[r2(E)] == N if [E] = (M.N) e M
[enc(E, F)] := enc([E], [F])
[dec(E,F)] := M if [E] =enc(M,N)e M A [F]=NeM
[encS(E, F)] := encS([E], [F])
[dec(E, F)] := M if [E] =encS(M,N)e M A [F]=NeM
[op(E)] := op([E]) if op € {pub, priv, hash}
[op(E, F)] := op([E],[F]) if op € {hmac, kas, kap}
[E(E)] = M([F]) if [E]=MeM
[E] =L otherwise

[[] : F— {true, false}

[tt] := true
[6 A 9] = true if [4] = [¥] = true
[[E =F]] :=true if [E]=[F]=MeM
[[E:M]] :=true if [E]=MeM
[inv(E, F)] :=true if [E]=M €M A [F] =inv(N) e M
[¢] := false otherwise

Table 4. Definition of the evaluation of expressions and formulas

check B : ¢ for the validity of the formula ¢ from the point of view of agent B.
In addition, the following actions are useful to express additional actions during the protocol execution:

scoping A : newk, represents the creation and scope of private names;
assignment A : x:= E the variable x assume the value of the expression E (this became handy only
when performing the CSE optimization)

When an agent receives a message, he binds that message to a fresh variable for reference in the subsequent
processing. For this purpose, a set ,y, z, ... of variables V is introduced. Such set is assumed to be disjoint
from N U A.

Since an agent does not only handle messages but also variables, the notion of message expressions
(E) is introduced, along with the operations needed to construct and deconstruct messages. Messages
received during the protocol execution, and stored in variables z, are closely related to the statically
intended messages M described in the narration. For this reason, bindings (M, z) € M x E are used.

The process of finding out whether some expression represents a particular message, is formalized by
means of an evaluation function which is shown in Table 4. Note that if an expression contains variables
the evaluation fails.

Formulas ¢ on received messages are described by a conjunctions of three kinds of checks:

equality [E = F] on expressions denoting the comparison of two bit-streams of E and F;

well-formedness [E : M| denoting the verification of whether the projections and decryption contained
in E are likely to succeed;

tnversion inv(E, F) denoting the verification that E and F' evaluate to inverse messages.

The evaluation function is extended to formulas; it can be seen in [14] that, [E : M] is just a macro for
[E = E] . Similarly, inv(E, F') can be encoded (for example) as [dec(enc((E.F), E), F) : M].

Since consistency checks will have to operate on (message,expression) pairs, the representation of the
agent’s knowledge must be generalized to finite subsets of M x E. The underlying idea is that a pair
(M, E) denotes that an expression F is equivalent to the message M. For this reason is it necessary to
introduce the notion of knowledge sets, and two operations on them:

— synthesis reflecting the closure of knowledge sets using message constructors;

(M,FE) € S(K) ,
SYN—OP1 (op(M), op(E))eS(K) op € {pub, priv, hash}

(M,E) € S(K) (N,F) e S(K)
SYN—OP2 op € {enc,encS, hmac, kas, ka
(oM, N), op(B, Fes(k) P €1 v}

(M,FE) € S(K) (N,F) e S(K)

SYN—PAIR ((M.N), (E.F))eS(K)

(M,FE) € S(K) (M, F) e S(K) MeN

SYN—FUN (M(N), (E(F))eS(K)

SYN—KAP

(M,FE) € S(K) (N,F) e S(K) MeN
(kap(M,N), kap(E, F))eS(K)

(kas(kap(M,N),O), kas(kap(E, F),G) € S(K) MeN

SYN-KA-EQ (kas(kap(M,O), N), kas(kap(E,G), F) € S(K)

Table 5. Synthesis SyN-rules

— analysis reflecting the exhaustive recursive decomposition of knowledge pairs as enabled by the
currently available knowledge.

Formally these sets and operations are defined as follows [14]:

Definition 1 (Knowledge).

— Knowledge sets K € K are finite subsets of M x E.
— The synthesis S(K) of K is the smallest subset of M x E containing K and satisfying the syN-rules
in Table 5.
— The analysis A(K) of K is |J A,(K) where the sets A;(K) are the smallest sets satisfying the
neN
ANA-rules in Table 6.

With respect to the original work of [14] we added the SYN-rules SYN-OP2, SYN-FUN, SYN-KAP, SYN-
KA-EQ and the ANA-rules ANA-OP2, ANA-FUN in order to support a more expressive language like AnB.
In addition, we find useful to distinguish between symmetric and asymmetric encryption which came
handy in optimization to take advantage of the different properties of these primitives. These new rules
are necessary to generalize the notion of synthesis and analysis with functions and operators defined in
AnB/AnBz, and previously unavailable in the original work. It is worth noting that the SYN-KA-EQ rule
is necessary to model the algebraic equivalence (kas(kap(g,x),y) = (kas(kap(g,v),).

The above knowledge representation allows generating the checks required on message reception.
Assuming that agents have some initial knowledge (usually of the form (M, M) where M are the messages
corresponding to the known facts as stated in the knowledge section of the protocol) the knowledge set
is extended during the protocol execution, according to the information learned during the reception
actions: the expected message and the corresponding expression. The checks must verify:

1. if the expectation of the recipient on the received message (as expressed statically in the narration)
is matched by the recipient’s current knowledge;

2. if the knowledge increase obtained while receiving the message is consistent with the previously
acquired knowledge.

Some checks depend on the structure of messages: for instance, if an agent receives an encrypted message
he should be able to decrypt the corresponding expression if he knows the correct key.

Other checks result instead from the fact that a message M may occur more than once in a protocol
narration. In this case the same message M could be associated to two different expressions F; and Ej.
Since the term M is used in the protocol specification to refer to the very same message, the current
knowledge set can be considered consistent only if the two expressions evaluate to the same message. In

10

(M,E) e K
(M, E)eAo(K)
(op(M), E) € An(K)

ANA—OP1 op € {pub, priv, hash
((M)7E)€An+l() P {p P }

ANA—INI

(op(M,N), E) € An(K)
ANA—OP2 (op(M, NV, B)edn s (K) op € {hmac, kap, kas}

) € An(K)
)EAR+1(K)

ANA—FUN

5 =
=z
SIS

ANA—FST

((M.N),E) € A.(K)
))EAn11(K)

((M.N), E) € An(K)
(N, m2(E))eAnt1(K)

(encop(M,N),E) € A, (K) (inv(N), F) € S(An(K))
(M,dec(E, F)eA,+1(K)

ANA—SND

ANA—DEC

encop € {enc,encS}

ANA—-DEC—REC

encop € {enc, encS}

(encop(M,N), E) € A,(K) (inv(N), F) ¢ S(An(K))
(encop(M, N), E)eA,+1(K)

(M,E) € Ap(K) MeNUA

ANA—NAM—REC
(M,E) € Apt1(K)

Table 6. Analysis ANA-rules

the case of asymmetric keys, it can also happen that, in some knowledge set, there is a combination of
(My, Eq) and (M, E5) where My = inv(Ms). In this case, inv(F1, Ey) should also be satisfied.
These requirements are formalized in the definition of consistency formula [14]:

Definition 2 (Consistency Checks).
Let K be a knowledge set. Its consistency formula ®(K) is defined as follows:
P(K) = /\(M,E)eK [E: M]
AN N, Eyekn(M,E)es(K) B £E; [Ei = Ej]
A N, By ek AGno(M), E;)es (i) T (Ei; Ej)

The first conjunction clause checks that all expressions can be evaluated, the second checks that if there
are several ways to build a message M, then all the corresponding expressions must evaluate to the same
value. The third conjunction clause checks that if it was possible to generate a message M and its inverse
inv(M), then the corresponding expressions must also be mutually inverse.

The generation of the consistency formulas, implies comparing pairs taken from K with pairs taken
from S(K). It can be shown that comparing pairs only in K is not sufficient. On the other hand,
comparing any possible combination of pairs taken from S(K'), would lead to an infinite formula. For
this reason, knowledge sets can often be simplified without loss of information, i.e., without undermining
the computation of the consistency formula (for the details refer to [14]).

Compilation The above notions are the elements required to compile the protocol into an executable
protocol narration. The translation function keeps track of the global information on the used variables
and hidden names, as well as the agent local information, about their knowledge on generated names.

In detail, statements like private k and A generates n check both that the local (or generated)
name is fresh, but they are handled differently: whereas the construction A generates n increases the
knowledge of A, the name k of private k is not added to any knowledge; this task is deferred to the
explicit A knows k clauses for the intended A.

The compilation of A — B : M checks that M can be synthesized by A, instantiate a new variable
2 and adds the pair (M, z) to the knowledge of B.

11

Protocol Compile Time (sec) Execution Time (sec) Memory usage® (MB)

m @ 6 » @ 6 ® @ 3)

2KP (orig) 97.75 2.25 243 1.080 0.813 0.715 3.46 8.24 8.69
2KP (AnBz) 1.03 0.13 0.14 1.013 0.945 0.799 091 0.88 0.98
3KP (orig) 6,945.43 13.20 13.10 100.848 0.826 0.779 411.52 33.64 36.13
3KP (AnBzx) 8.88 225 243 1.255 0.908 0.738 1.05 1.04 1.04
SETv2 (orig) 513,827.20 3.04 3.51 4.052 1.107 0.888 226.07 7.91 10.63
SETv2 (AnBzx) 0.84 0.05 0.05 1.080 0.889 0.816 0.74 0.83 0.81
H530 1.89 2.70 3.60 1.962 1.792 0.729 10.14 5.31 5.23
Google SSOv2 1.33 0.02 0.05 1.072 0.902 0.804 0.68 0.75 0.73
Kerberos PKinit 0.37 0.36 0.37 1.320 0.936 0.832 1.35 1.88 2.06

Table 7. Experimental results: (1) as in [14] w/o opt, (2) “prudent” and (3) “standard” optimization (* at compile
time)

The consistency formula $(A(K)) of the analysis of the updated knowledge K defines the checks
¢ to be performed by B at run-time. The compilation process is formalized in [14] and the differences
with the current implementation are reported in [28].

3.4 Performance issues and optimization of the generation of consistency checks

A preliminary version of our compiler, released in 2012 [26], implemented verbatim the method proposed
in [14], only extending the analysis and synthesis rules in order to support cryptographic functions which
were not available in [14], HMAC and Diffie-Hellman key agreements in particular. Unfortunately we
found that, especially with some industrial-size protocols, it turned out to be very inefficient. In our
experiments (Table 7, Figures 4 and 5), we found challenging working with the original specification of
the e-commerce protocols SET [21] (we considered the unsigned variant denoted SETv2 in which the
customer does not possesses asymmetric keys) and 3KP [13]. A clear symptom of inefficiency was the
fact that these protocols required very long time to be compiled (around 1 hr and 55 min for 3KP and
almost 6 days for SETv2 on a Windows 7 64-bit machine with CPU Intel Core i7-3770 3.40GHz, 8 GB
RAM, JDK 7.0.45 64-bit, Haskell Platform 2013.0.0.2). We refer to this configuration throughout the
paper. In same cases, applying the CSE optimization to the intermediate code was impossible. We faced
a space explosion problem, leading to out of memory errors.

These protocols are characterized by several nested levels of encryption and by an extensive use of
hash and MAC functions that are used to verify the consistency of data exchanged among the protocol
participants. This leads to the generation of a high number of consistency checks involving comparison
of message digests. In contrast, our revised versions [20,26] of SET and 3KP versions were performing
rather well with compile time of less than 1 sec for SET and less than 9 sec for 3KP.

In addition we noticed that some of the computed checks were failing anyway. It turned out that
the reason of this discrepancy was the different behavior, in the abstract and concrete model, of the
cryptographic primitives. In fact, given two identical messages and encryption keys, a non-deterministic
encryption scheme returns two different ciphertexts which are indistinguishable by an observer. This nice
(in the real world) property was not properly captured by the model.

To address this issue, we could have refined our model adding to the abstract functions enc and
encS, modelling symmetric and asymmetric encryption, a third argument, as proposed by Abadi and
Fournet in [33], which represents a randomized quantity to distinguish between different ciphertexts of
the same message and key. This would force the tool to synthesize checks that match the behavior of the
non-deterministic encryption primitives, but at price of computing more expressions and with an extra
parameter. Therefore, to solve the problem more efficiently, we found more straightforward to reason on
how to avoid the generation of the expressions involved in these failing checks.

12

1000000

100000
EMB&N mPRD © STD

10000

1000
100
10
0.01

2KP (orig) 2KP (AnBx) 3KP (orig) 3KP (AnBx) SETV2 (orig) SETV2 (AnBx) H530

[

[

B&N [14] w/o opt, PRD “prudent” and STD “standard” optimization

Fig. 4. Compile Time (sec), logarithmic scale

The key point is to observe that, if an agent knows the correct decryption key, he will deconstruct
the ciphertext using the ANA-rules. In this case he will only store the decrypted message in his own
knowledge, forgetting the ciphertext. The only exception is represented by forwarding channels, as in
SET and iKP where, for example, the merchant must forward a message originating from the customer
but secret for the acquirer. Given this, and assuming the non-determinism of the encryption scheme, if,
to build an expression involved in an equality check, the agent needs to encrypt some data, the check is
going to fail anyway because the new ciphertext will be different from the one to be compared with.

Therefore, if we prevent the agent from using the SYN-0OP2 rule, for ope{enc, ensS}, when computing
the checks, we substantially avoid computing any check which requires synthesizing new terms using
symmetric and asymmetric encryption. With respect to the solution proposed in [33] we save a significant
computational effort because there is not need to synthesize a lot of useless expressions that will be later
discharged. It is important to underline that this does not undermine the robustness application because
we just prune checks failing due to the over approximation of the abstract model.

The overall achievement here is two-fold: on the one hand we achieve a dramatic increase of speed in
computing the checks; on the other hand we get rid of (most of) the checks would fail anyway because of
the non-deterministic nature of the cipher schemes used in practice. In any case we leave the option to the
developer to choose whether to model deterministic or non-determinist encryption schemes, distinguishing
between symmetric and symmetric encryption.

The only (few) potential checks which are not still captured, are those involving terms which cannot
be decrypted on reception and that are stored in the agent’s memory. However, after the generation
of the checks, they can easily be detected using pattern matching and type-checking, as we do. The
practical advantage here is that, for complex protocols, we drastically reduce the check set and cut the
computational effort. Therefore, the optimization (CSE) and check refinement can be performed, in the
next steps, on a reduced number of checks. It should also be noted that the reordering performed by
CSE allows for further optimization of the checks as we explain in section 4.

Experimental results From the experimental point of view, we were able to reduce the compile time
for 3KP, from 1 hr 55 min to just 13 sec, decreasing the peak memory usage (measured by the Profiler of
the Haskell Compiler 7.6.3) from 411 MB to just 16 MB. The execution time was also cut from 100 sec
to just 1.34 sec. This large difference is explained by the fact that the standard algorithm compute more
than 10,000 checks (but most of them are failing), while our version, generates about 50 checks. So far,
in these experiments, we did not consider any optimization implemented in the following steps. However,
memory usage reduction is a prerequisite to perform CSE on machines having a standard amount of
RAM (4-8 GB). We also carried out an experiment performing CSE on the protocol 3KP and we found
that, without our optimization, at least 48 GB of RAM were necessary complete the task.

For the protocol SETv2, the good news is that it can now be compiled in less than 3 sec while before
it required almost 6 days. Peak memory usage was also decreased from 262 MB to just 6 MB. However,
the execution time diminished just from 4.05 sec to 2.89 sec. This is interesting because in this case the

13

check set is not heavily pruned. Indeed our changes allows detecting the checks more efficiently than
before.

In summary, the practical contribution of the work presented in this section is that now the tool can
be efficiently used on standard desktop machines and its performance is more than adequate for agile
prototyping.

4 Executable Narrations Optimization

The executable narration format describes in operational terms the actions and the checks to be performed
by every agent. However, our goal was to generate efficient code. The idea is to use some compiler
optimization techniques to speed up the execution time. In addition, we found useful, at this level, to do
some analysis and refinement to make the generated code more compact and readable. We present here
the strategies we implemented and report on some experimental results. It should be underlined that
these optimizations have a significant impact mainly on large protocols, because in simpler protocols the
number of checks is rather limited, so there is not much room for optimization. We run 10 consecutive
times the protocols in Java and computed the average values. The reader must be aware that especially
in the case of memory usage at compile time (Table 7), the data are just indicative, because the Haskell
Profiler does the measurement of the “maximum residency” by sampling. Anyway, we found these values
useful to understand the order of magnitude of the benefit of the different optimization techniques.

Common Subexpression Elimination (CSE) In general, during the protocol execution, operations
like encryption, decryption, hashing can be performed on the same data more then once. This phenomenon
affects in particular the verification of the checks because the recipient, intuitively, has to test all the
possible ways to verify how his knowledge and expectations about the received messages match with
the actual ones. This also implies that, on different equality checks, the same subexpression can often
appear more than once. Here we assume that two syntactically equivalent expressions in the AnB model
are intended to compute exactly the same value. Therefore, the elimination does not have side effects.
Instead, if the repeating encryption operations rely on some randomization, this should be made explicit
by the designer in the protocol specification, for example using a confounder.

Since it is well known [34,35,36] that cryptographic operations are computationally expensive, it
is convenient to store the results of common subexpressions in variables that can be later employed to
evaluate expressions in the rest of the protocol. We make here the reasonable assumption that storing and
retrieving values from a volatile memory is less expensive in time and space than performing additional
cryptographic operations on the same data. In terms of performance gain, CSE allows us to cut the
execution time by 24% in 3KP, 60% for SETv2 but just 3% for H530. Our tool performs CSE in two
passes:

1. During the first pass (discovery phase) the instructions in the narration are analyzed and the can-
didate expressions are found. The candidate expressions must include at least one of the following
CPU intensive operations: encryption, decryption, hashing, hmac, functions and operations on keys
like those performed during key agreements. Clearly, at this level of abstraction, is it impossible
to assess the computational complexity of symbolic non-cryptographic functions, but we preferred
to include them, considering their presence in the abstract model, as an signal of their relevance.
Moreover, to improve code readability we also considered the projection operations. If, during the
protocol execution, an agent computes the candidate expression more than once, a new variable is
created and the corresponding expression is assigned to it. The expression is then substituted by the
variable in all its occurrences. The mapping of variables and expression is stored.

2. In the second and final pass (reordering phase), the variable assignments are analyzed and reordered
to further decrease the number of cryptographic operations avoiding recomputing more than once
the same values. This pass is needed because during the first phase the statements are analyzed in
sequential order, therefore here we discover dependencies among variables, and thus anticipate the
assignment of variables which are subexpression of other variables.

For example, this sequence of statements performed by the customer in 3KP

VarCy := deciny(pr(c)) (Ta(deciny(prcy(VarCy)))

14

VarCy := deciny(pr(c)) (VarCo)
can be reordered as follows, saving one decryption operation

VarCy := deciny(pi(c)) (VarCo)
VarCy := decinypr(c)) (ma(VarCy))

Although we do not have yet a formal proof of soundness, we believe that for CSE it could be based
on the properties of the semantics of AnB, which is defined in terms of the AVISPA Intermediate Format
IF [12]. In fact, the local state of the honest agents during the protocol execution is denoted by facts
state4(A,mi,...,my,), where A is the role of the agent, A is the name of the agent, and my,...,m,, is an
unordered lists of terms, known by the agent, that grows monotonically. Being the list unordered and
persistent, nothing prevents, in a safe protocol, the honest agents to build and store in advance the terms
they need to be compute during the protocol execution. Therefore, changing the order in which terms are
computed (and dropping the duplicated ones) should not introduce new attacks, as long as the agent’s
system is not compromised.

“Prudent” vs “Standard” optimization An additional option offered by the reordering in CSE is the
possibility of pruning at compile time the check set. In fact, provided the success of a predecessor in a
sequence of checks, it is safe to substitute the occurrence of the expression with a variable in all subsequent
checks of the same step of the protocol, dropping the duplicated checks. This sound appealing but in any
case the user must be aware that if, for any reason, the previous check is skipped, then the overall safety
of the application can be compromised. To some extend this is comparable to what happened in the “goto
fail” bug of the Apple TLS implementation [6]. In fact if there is no assurance that a previous check
has been performed correctly, there is no guarantee that some meaningful checks has not been dropped
by mistake. Therefore, we found useful to devise two approaches letting the user to choose between two
kinds of "optimized” modes for building checks.

1. “prudent”: does not assume the success of any previous check. This implementation is slower but
more robust, since every check is independent from any other checks. In addition, the order of checks
does not count, modulo the variable assignment and reordering done in CSE;

2. “standard”: assumes the success of the previous checks in the form var = expr that are used to prune
the subsequent related checks. This an highly optimized implementation, and it is proper to speak
about an ordered list of checks since here the order matters.

In the 3KP protocol we started from more 10,000 different checks in the unoptimized original algorithm
[14] down to 22 for the "standard” and around 50 with the ”prudent” implementation. In the case of
protocol H530 we have 952 "prudent” checks vs 20 ”standard” checks. Although not systematic, these
numbers give an idea of the fact that for a professional programmer distilling manually and finding an
optimal list of checks is not trivial. In terms of performance gain, we found for the protocol H530 a
reduction of the execution time of 41%, 10% for 3KP, 11.5% for SETv2. For other protocols the average
gain is between 5-10% but it is could be negligible if the set of generated checks in the two approaches
are almost identical.

Pair = Tuples The solution proposed in [14] uses to represent tuple as nested pairs. While we found this
useful to compute faster the checks, since both the source and the target language support concatenation
and projection, we implemented a conversion function. This improves the code readability and it is widely
supported, being the projection operator 7; [] commonly available in many programming languages (e.g.,
the retrieval of the i-th element of an array).

Deferred Generation of Fresh Values In an executable narration, the actions associated with the
generation of fresh values are placed in [14] at the beginning of the protocol, regardless the actual step
in which they are used. It is hence useful to rearrange the order of these actions to defer the creation
of fresh values until they are really necessary. In practice the effect is to perform each new action just
before the action employing for the first time that fresh value. This could reduce to load of the processor,
for example when a protocol session is aborted, due to a check failure or an ongoing Denial of Service
attack.

15

100

EMB&N ®PRD © STD

10

0.1 . I . i . I

2KP (orig) 2KP (AnBx) 3KP (orig) 3KP (AnBx) SETV2 (orig) SETV2 (AnBx) H530

=

B&N [14] w/o opt, PRD “prudent” and STD “standard” optimization

Fig. 5. Execution Time (sec), logarithmic scale

5 From Executable Narrations to Java Code

As we have seen in the previous sections we began from a specification of a security protocol in AnBx
and through a series of translations we obtained a more detailed, but still abstract, representation of the
protocol, called optimized executable narration. This intermediate protocol scheme that formalizes and
refines the original specification, is an important step because it makes explicit the actions and the checks
upon reception that each agent has to perform during the protocol execution. The way such actions and
checks are written is suitable to be translated in an imperative programming language because they can
be expressed by means of constructs that are generally available in such languages: variable assignments,
functions and procedure calls, logical conditions such as equalities.

It should be clear that before to automatically generate the source code of an application, we need to
fill several implementation details that are not caught by the formal model. If we consider the optimized
executable narration as a complete, language independent, abstract representation of the protocol, we
can devise a design approach that keeps apart the protocol logic from the application logic.

Informally we can say that, given a target programming language, the application logic is the part
of code that is added to the protocol logic in order to generate the concrete and complete application.
Separating the two logics (Figure 2) has the potential advantage of allowing the generation of source code
in different programming languages. Although here we are focusing on Java we think that, applying the
same strategy, the generation of code in other object-oriented or procedural typed languages might be
done with a limited effort. The main idea is to plug the protocol logic in the application skeleton/template
that is independent from the protocol itself.

To implement such approach, from the practical point of view, we need at least the following ingre-
dients:

— a parametrized application template — the application logic;

— the information derived from the protocol — the protocol logic — employed in the preparation of the
code generation. We denote such intermediate format as JProtocol;

— a software library accessible through an application programming interface.

Parametrized Application Template - Application Logic This component, written in the target language,
is the skeleton of the application. The functions implemented by this template can include, for exam-
ple, the parsing of command line arguments, the initialization of the agents, the configuration of the
communication channels and the software components offering access to the cryptographic resources.
These functionalities are typically used by every security application regardless the concrete protocol
and hence they are suitable to be included in the application template. Clearly the concrete code must
be parametrized according to the protocol specification, hence the protocol steps and relative actions
will depend on the specific protocol. Additionally we can consider the fact that every agent must open
at least one communication channel, but the exact number of channels depends on the protocol logic.

16

JProtocol - Protocol Logic From the optimized protocol narration we must derive the information that
will be used to instantiate the application template, and hence a translation process must be defined. We
found useful to introduce here another intermediate step because it makes simpler to extract from the
protocol narration the information (i.e., the parameters) that will be used to instantiate the application
template during the code generation. This format is still independent from the target language, and this
comes out to be handy for the generation of the code in the target language.

The information extracted includes the parameters needed to instantiate each agent: the channels
used, the local variables and the local procedures. It is worth noting that almost all the information can
be directly derived from the optimized protocol narration, but, in a few cases, it might be necessary, or
just more convenient, to retrieve the information from the AnB specification.

The intermediate protocol format that we call JProtocol is a 8-tuple including the following elements:

(name, roles, steps, channels, fields, methods, shares, actions)

— The protocol name. It is used thoroughly in the code generation. First of all it gives the name to the
application. It is retrieved from the AnB specification, since the executable narration do not carry
this data;

— The roles (agents) running the application. The role names are used by the agents to refer to their
peers in the narration. They will also be bound to the concrete agent names/aliases by means of a
mapping defined in the application configuration file (see 5.3). Since the set of roles is built analyzing
the actions, agent names included in the agent knowledge, but not involved in the protocol, are
ignored;

— The protocol steps. To improve the readability of the generated code, instead of writing the actions
performed by each agent just as a sequence of statements, it is more convenient to group them
according to the protocol steps to which they belong to. In this way each step will include only one
communication action (send or receive), and zero or more actions of assignment or check type. The
idea is to have a main procedure calling to a subroutine parametrized on the protocol step. This
allows generating more meaningful logs and makes easier to debug the application. The steps are
retrieved analyzing the protocol actions;

— The communication channels employed during the protocol execution. Each pair of communicating
agents needs a channel, which, in the standard network environment, will be implemented as a
TCP/IP socket where one agent will act as client and the other as server. As a design choice, the one
who starts the communication will be the client, the other the server. If an agent exchanges messages
with more than one agent, he will need to open a different channel with each peer. Again, the channel
parameters are inferred from the protocol actions;

— For each role, the local variables, procedures and functions must be derived. In an object oriented
terminology, they are the class fields and methods that are declared by each role class. These element
will be used in statements that will implement the protocol actions in the target language;

— The shares are used to model the knowledge which is shared among agents prior the protocol exe-
cution (for instance a pre-shared symmetric key). These elements are derived from the AnBz speci-
fication;

— The actions performed by each agent during the protocol run. There are two issues to consider in
the translation from the optimized executable narrations to the intermediate format: the translation
of actions, and the translation of expressions used in such actions.

How local methods and field are retrieved and how actions are translated is explained in the next section.

Software Library and its Application Programming Interface Instead of fully generating the source code
of every function used by the application, it is convenient to isolate a set of software components which
can be reused among different applications. This approach is feasible because the class of programs we are
considering performs actions that can share a common set of standard functions. Think about sending
and receiving messages, encrypting and decrypting data, and so on. Therefore, it is advantageous to
group and standardize these common functions and data structures, in what is usually called a software
library. The access to the resources of the library is, as customary, defined by means of an application
programming interface (API) (Section 6). This design strategy has several clear advantages:

— it relieves the application from dealing with a lot of implementation details;

17

— it makes considerably simpler the specification of the application templates;

— it makes more modular and cleaner the shape to the application;

— the maintenance of the code is simpler and more efficient: every program can benefit from the
improvements and bug fixes in the library;

— it gives the chance to use alternative implementations of the library, provided the same standard
APL

5.1 From Optimized Executable Narration to JProtocol

As we have seen, the intermediate representation of the protocol is a 8-tuple:

(name, roles, steps, channels, fields, methods, shares, actions)

In the previous section we shortly explained how the first four components are retrieved from the
optimized executable narration. The procedure is simple and does not deserve any further explanation.
Instead the last components require some care:

Local Procedures/Methods The set of local (private to each role) methods is built analyzing the dec-
larations of the optimized protocol narration. If a function is part of the agent knowledge, excluding
functions belonging to the library, such function must be available to the agent. In practice, in an object
oriented language, a private method must be implemented in the role class. However, since in the protocol
narrations the functions are abstract, only the skeleton of the method can be generated and a dummy
value is returned. In this way, the generated code can be compiled and the application will be runnable,
but the duty of filling the skeleton with a concrete implementation of the function is left to the user.
This is the only “to be completed” portion of code produced by the code generator.

Local Variables/Fields The definition of the local variables, or class fields, is obtained by two components:

1. The first one derives from the declarations, and includes, for each agent, the known and the generated
names. For each name a variable is declared, excluding the role names and the function names. For
example, given this portion of the knowledge of agent M:

knows hash
knows hmac
knows C

knows price
generates tid

EREEER

the translation will include the declaration of two variables price and tid. The remaining names are
ignored because they are either role names (C) or functions included in the library (hash and hmac).
Along with the variable identifier, the type, as inferred by the type system (see 5.2), is stored.

2. The second component is built gathering information from the action list. For each assignment or
reception action a variable will be declared. For example, these statements

M: ?VAR_M_O
M: VAR_M_1 := dec(VAR_M_O,priv(pkM))

will imply two variables declarations: VAR_M_0 and VAR_M_1. They will, respectively, store the value
received by agent M and the result on an expression, namely the computation of the decryption of
the first variable with the private key of agent M. Again, the type of the variable is evaluated by the
type system.

Mapping of Ezxpressions The last component of JProtocol, the mapping of the actions, requires the
translation of expressions (Table 1) to a format that we call jexpressions (Table 8). In many cases the
translation is straightforward, but when the expression includes functions like encryption and decryption
some care is needed. The operators encS, enc and dec are commonly used to model the symmetric and
asymmetric encryption. Moreover, in the latter we distinguish, as it happens in practice, between the
digital signature operation and the standard encryption applied to achieve secrecy. The discrimination
is done by means of the following public keys conventions: key identifier = prefix sk 4+ agent name, for

18

E,F :=encrypt(E, F) asymmetr encryption
encryptS(E, F) symmetric encryption
)

decrypt(E, F decryption
sign(E, F) signature
verify(E, F) verify
hmac(E, F) hmac
hash(E) hash

DHSecKey(E,F) DH secret key

(Eq,..Ep) tuple

i (E) projection

f(E) function

var(z, E) variable binding
id identi fier

|
|
|
|
|
|
| DHPubKey(E,F) DH publickey
|
|
|
|
|
|

Table 8. Syntax of jexpressions

the signature and key identifier = prefix pk + agent name, for the encryption. Key patterns not falling
in these two classes are treated as a symmetric encryption. The type checker is in charge of verifying if
the key type is coherent with the structure of the expression.

Here some examples showing how expressions are translated to jerpressions:

dec(X,priv(pkM)) => decrypt(X,priv(pk(M))
dec (X,pub(skM)) => verify(X,pub(sk(M))
enc (X,pub(pkM)) => encrypt (X,pub(sk(M))
enc (X,priv(skM)) => sign(X,priv(sk(M))
dec (X,K) => decrypt (X,K)

encS(X,K) => encryptS(X,K)

The translation of identifiers (names) and agent names maps each identifier to a pair (identifier,
type). Since the executable narration is untyped, we rely on the declarations statements included in
the AnBzx specification. No ambiguity arises for types Agent, Certified, and SeqNumber. Identifiers
of type PublicKey are conventionally mapped to public keys for encryption. Instead types like Number
and Symmetric_key are too generic to be employed directly. For example, nonces and key agreement
parameters including half-keys are all declared in AnBz as Number but in the target language they have,
in general, a different type.

To overcome any possible ambiguity, the type is inferred by means of a naming convention (Table
9), provided that these identifiers are declared as Number or Symmetric_key. The same name convention
is used to denote identifier added in the compilation from AnBz to AnB, hence the original type is
preserved.

Although in some cases the type could be inferred by the message structure, we believe that forcing the
designer to use the appropriate type would avoid accidental mistakes which could otherwise be discovered
only at run-time. However, it should be noted that a designer, using only the AnBzx specification language,
can simply ignore these details because, in this case, the compiler is fully in charge of generating the
concrete cryptographic implementation.

prefic type

Nx nonces

Kx symmetric keys

Xx,Yx Diffie-Hellman parameters and half keys
Hx hmac keys

SQNx sequence numbers

Table 9. Naming convention for the AnB identifiers of type Number and Symmetric_key

19

I:=iA:newz:T fresh name generation
| i, A:send(B,ch,E) message emission
| i, A:receive(B,ch,z:T) message reception
| ,A:z:T:=F assignment
| i,A:¢ check

where A,B agents, z:T variable of type T, E expression, ch channel, i step, ¢ check

Table 10. Syntax of jaction

Mapping of Actions Having translated the expressions is now possible to translate the actions to the
format we call jaction (Table 10). First of all, every action is labeled with the protocol step. As we
mentioned earlier each step includes one send or one receive action, and zero or more actions of type
assignment or check. Therefore the protocol step number is not unique but it is used to group consecutive
actions in the generated code. Moreover, emission and reception actions are enriched with the reference
to the communication channel used by them. This is necessary because in the concrete code the commu-
nications actions must be bound to a specific communication channel. The steps and the channels lists
are available from the previous steps. Finally, the type of the variables created in actions — reception,
assignment and fresh name generation — is inferred by the type system and stored along with the variable
identifier.

5.2 The Type System

AnB is a typed language, but its set of types is too coarse compared to what is necessary in practice to
encode a security protocol in Java. Some types like Symmetric_key can be useful to map the concrete
types, other types like Number are sufficient to describe an abstract model suitable for verification but
extremely vague in terms of a concrete implementation. For instance, while Number is used in AnB to
model both nonces and key agreement half-keys, in Java nonces may be instances of the class ByteArray,
while public half keys may be instances of the class PublicKey. As mentioned earlier, few naming con-
vention are used (Table 9) to mark different types of key material and nonces. Moreover, we assume that
the functions pk and sk are used in a dual key asymmetric cryptosystem were pk is used for encryption
and sk is used for digital signature. These conventions are aimed at avoiding ambiguity which could arise
even using type inference. In this way the type checker is able to detect errors like using pk instead of
sk, or using the wrong type of keys. Given these assumptions we delegate the type system to infer all the
other types. This reduces the need of type annotations and if type-checking of the specification succeeds
it guarantees that the Java code generated is well-typed.

However, name conventions in general are not sufficient to handle complex terms. Let’s look at the
encryption and decryption operations. Agents should be able to encrypt any term!; in turn, decryption
should output a term of the original type, the type of the data before the encryption. For example, in
Java we could have a cryptographic engine exposing the following methods for symmetric encryption and
decryption:

public SealedObject encryptS(Object obj, Key symmetricKey) {...}
public Object decrypt(SealedObject so, Key symmetricKey) {...}

The first methods encrypts any Object with an appropriate Key and outputs an encrypted object of
type SealedObject. A snippet of code using such methods is:

private SealedObject SO0 = null;

private String Msg = new String ("msg");

private Key myKey = ... // the key is retrieved from the key store
SO0 = encryptS(Msg, myKey);

ch.send(S0); // the data is send to the network

It should be noted that the call to encrypt () does not require an explicit cast of Msg. In fact String,
as any other type in Java, is a subtype of Object. On the contrary, the decrypt () method outputs a

! In our case we consider Java classes that implement the serializable interface.

20

value of type Object. Therefore in order to assign that value to a variable of type String an explicit
cast is required. Otherwise the program will not compile.

private SealedObject SO0 = null;

S0 = ch.receive(); // a SealedObject %s received from the network
private String Msg;
private Key myKey = ... // the key ts retrieved from the key store

Msg = (String) decrypt (S0, myKey);

However this does not guarantee the absence of run-time errors. For example, in the above code, we
could have a run-time error (and the raise of cast exception) if the decrypted object is not of the expected
type (String) or a subtype of it. What we need, in general, is the ability to infer the type of terms. This
is used to declare new variables or compute the appropriate cast in assignments or within expressions.
Such task can be accomplished by the type system and its type inference algorithm.

Types in Table 11 are those typically used in a wide range of security applications. It is worth noting
that these types are still abstract, in the sense that their mapping to concrete types in the target language
is postponed until the actual code is generated.

Some types (Agent, Certified,SeqgNumber,SymmetricKey) simply map the AnB types. PublicKey and
PrivateKey are parametric types where the parameter is used to distinguish keys with different purpose
(signing and encryption). Three more parametric types are used for encrypted (sealed) and signed ob-
jects. In this case the parameter is needed to keep track of the original type of the object before the
cryptographic operation. The parameter is employed when the inverse operation is performed.

In details: SealedObject is an encrypted object, SealedPair is used when a key is encrypted along with
data as in the hybrid cryptography, SignedObject is a digitally signed object. Hash and Hmac are used
to model digests. Keys, used to compute the HMACs, should have type HmacKey. A set of DH-types is
used for values employed in key agreements. Tuples and functions are standard features of the language
and they have their type counterparts here. Finally Object and String are the base types. Object can be
thought as the default type, while String is a type commonly available in many programming languages,
and it is useful in the generated code to produce human readable output.

The type inference algorithm is based on the typing rules shown in Table 12. The T-HASH and T-
HMAC rules model the creation of digests. The original type is obfuscated and cannot be retrieved since
hashing and macs are not invertible. T-FUN models functions, T-CAT the concatenation and T-PROJ the
projection. T-ENC-* rules model encryption. It should be noted that we impose some constraints on the
type of the key, depending on whether asymmetric or symmetric encryption is used. The resulting type
is parametrized on T, the type of the original object before encryption. Symmetrically the T-DEC-*
rules model the decryption. Here the parameter is used to determine the type of the object after the
decryption. Similarly, some checks are done on the type of keys employed for decryption.

T-SIGN and T-VERIFY behave like T-ENC-* and T-DEC-*, but they are used to model the digital
signature and its verification. The last three rules T-KAP, T-KAS-1 and T-KAS-2 are used to set the
typing rules of the operations performed during the key agreements. Two T-KAS-* rules are provided
because they model two ways the agents have to compute their shared secret keys, at the end of the key
agreement protocol.

5.3 Application Template

The last component of our toolbox is the application template. This set of files represents the skeleton of
the Java application, and we refer to it as the application logic. The template is filled with the protocol
logic, the data synthesized from the specification of the executable narration, and stored in the JProtocol
data structure. The template files must be written in the target language, Java in our case.

As a running example, we show portions of code taken from the revised 2KP (protocol name:
Rev_2KP). Additionally, to help the reader to understand the program structure, the UML class dia-
gram of the resulting application is shown in Figure 6.

In general, assuming that the protocol name is ProtName, the full application is composed of the
following Java file (classes):

ProtName. java The main file of the application defines the ProtName class, which implements only the
method main(). This method is invoked when the application is started: the command line parameters

21

<=Java Class=>
(& .AnB_Protocol<S,R>

it.univ e.dsi.anbg

m<_.._m<m_.“ AnBx_Layers

< name: String

< sharepath: String

< role: R

< gliases: Map=5String, String=

& AnB_Protocol()
cp runiMap=String AnB_Session= Map=5String, String=)
<> executeStep(AnS_Session,S)void

init():void

<

invCheckL(String, Object, Object):void
wCheckL(String, Object, Class=?=}void
invCheckL(String, Object):void
wCheck{Object, Object):void
invCheck(Object, Clazz<?=):void
wCheck{Object).void

w ffCheckL(String, Object) void

w ffCheckL(Si
w ffCheck{Object):void

w ffCheck{Object, Class=?=)void
eqCheckLiString, Object, Object): void
eqCheckL(String, Object, Object boolean):void
eqCheck({Object, Object) void

g,0bject, Class<?=)w

==lava

(3 Rev_2KP_Steps

Enumeration== eqCheck(Object, Object, boolean):void
status(5):void

r=v_Zkp statusLabel(String):void

& Rev_ZKP_Steps()

L R R R

status(S, Object) void

«=Java Class=»=
& AnB_Principal

it.univ e.dsi. anbog

< exchange_identities: boolean
< |b=: Map<String, AnB_Session=
+ aliases: Map<String, String=

oob_._ B_Principal(String, String, Map<String, Channel_Settings= Map<String, String=,Crypto_Config)
Gob_._ B_Principal{Crypte_KeyStoreSettings_Dual Map<String, Channe|_Settings= Map<String, String=}
oob_._ B_Principal(String, String, Map<String, Channel_Settings= Map<String, String=)

< init{Crypto_KeyStoreSettings_Dual Map<String, Channel_Settings= Crypto_Config):void

@ run(AnB_Protocol=S, R=):void

Gob_._ml_u incipal{Crypto_KeyStoreSettings_Dual Map<String, Channel_Settings= Map<String, String=, Crypto_Config)

A

<<Java Class=> .
(®Rev_2KP_ROLE_a (9 Rev_2KP_ROLE_II"

rev_Zhp rev_Zkp

<<Java Class>> =«Java Class==

On Rev_2KP_ROLE_a{Rev_2KP_Roles, String, String)

< init(}:void

Oo Rev_2KP_ROLE_M{Rev_2KP_Roles, String, String)
< init()ow

@ run{Map<5tring,AnB_Session= Map<String, String=}:void || @ run(Map=String AnB_Session= Map<String, String=):void

» executeStep(AnB_Session Rev_2KP_Steps):void
@ con{Object): String

el mmmﬂ_.:o,_&n.n@_._ B_Session,Rev_2KP_Steps)void

(9 Rev_2KP_ROLE_C (O Rev_2KP
rev_Zkp rev_zkp
Onn.mqlm_m_u.ln.o_.mlnn_u.mclwz_u.ln.o leg, String, String) Oon.mqlmz_u.nu_
& ity .| & main(Strina):void

@ run{Map<String,AnB_Session= Map=String, String=):void ..

< executeStep(AnB_Session, xmr‘lmx_ulmﬁm.n..ﬁ‘.ua_.n_. -

«=Java Class=»
(®Rev_2KP_CommandLine_Parser

rev_Zkp

On Rev_2KP_CommandLine_Parser()

om Parse(String[], String):void

%o._m_.__._m_z ame(Rev_2KP_Roles,Rev_2KP_Roles):String

mm__._ itRole({Channel_SSLChannelType Rev_2KP_Roles, Map<String, Channel_Settings= Map=String, String=):void

<<Java Enumeration==
(3 Rev_2KP_Roles

rev_Zkp

0.1 | éRev_2KP_Roles()

=z]ava Class=>
(9 Rev_2KP_Principal
rev_2Zkp

On_u.mclwz_ul_u_.__._ cipal{String, String, Map<String, Channel_Settings> Map<=String, String=, Crypto_Configh

Fig. 6. UML class diagram of the revised 2KP in Java

22

T ::= Agent agent

Certified certified agent

Nonce nonce

SeqNumber sequence number
SymmeticKey symmetic encryption key

PublicKey (S) public key of type S
PrivateKey (S) private key of type S
SealedObject (T') sealed object of type T
SealedPair (T') sealed object of type T + key
SignedObject (T) signed object of type T

Hash hash
HmacKey hmac encryption key
Hmac hmac
DH Base DH parameter spec
DHKeyPair DH key pair
DHPubKey DH public key
DHSecKey DH secret key
{Tiie{L.n}} tuple
T—T function
String base type
Object base type

S = PK key pair type for encryption

| SK key pair type for signing

Table 11. Type system - Types

are passed, by means of the Parse() method, to the final class ProtName_CommandLine_Parser. The
command line parameters args must include, along with other settings, the agent role that this instance
of ProtName is playing during the protocol execution. For each agent an instance of ProtName must be
created.

public class Rev_2KP {
public static void main(String[] args) {
Rev_2KP_CommandLine_Parser.Parse (args ,Rev_2KP.class.toString());

}

ProtName_CommandLine_Parser.java The purpose of the ProtName_CommandLine_Parser class is to
initialize the application. The invocation of method Parse() causes the processing of the configuration
file (details about its content are given below). The command line arguments are used to set up the
parameters of the application. In detail, the main actions performed by this class are:

1. the mapping between the roles in the protocol and the identities of principals playing those roles.
This is done by the initRole method

Channel_SSLChannelType ct = Channel_SSLChannelType.SSL_PLAIN;

Map<String ,Channel_Settings> cs = new HashMap <String,Channel_Settings >(0);
Map<String,String> aliases = new HashMap <String,String>();
Rev_2KP_Principal Rev_2KP_pr = null;

initRole(ct,role,cs,aliases);

Here ct is SSL/TLS channel type we are running the application on top of it. The default value is
the plain channel.
2. reading the configuration file and initializing the cryptographic engine

23

t: T

ToHASH hash(t) : Hash

t1: 11 to: HmacKey

T—HMAC
hmac(t1,t2) : Hmac

fZT1—>T2 t:Tl
f(t): T»

foreachi t;:T; i€ {l.n}
{ti ie{lnn}} . {Ti ie{lun}}

- {Ti ie{l..n}}
tl.j :Tj

T—FUN

T—CAT

T—PROJ

t1: Ty 12: PublicKey (PK)

ToENCmASYM enc(ti, t2) : SealedPair (T1)

t1 : T1 t2: TQ .
—ENC— T S tricKey, DHSecK
ToENCTSYM encS(t1,t2) : SealedObject (T1) 2 € {SymmetricKey, cckey}

t1 : SealedPair (Th) 12 : PrivateKey (PK)
dec(tl,t2) . T1

T—DEC—ASYM

: j T 2:T:
T—DEC—SYM b : SealedObject (1) 1 2 Ts € {SymmetricKey, DHSecKey}
deC(tl,tQ) T

t1:Th t2: PrivateKey (SK)
sign(ti, t2) : SignedObject (Th)

T—SIGN

t1 : SignedObject (T1) 2 : PublicKey (SK)

T—VERIFY ‘
verify(ti,te) : Ti

t1: DHBase t2: DHKeyPair

T T ap(ty, t2) - DHPubKey

t1: DHPubKey t2: DHKeyPair

ToKASTL kas(t1,t2) : DHSecKey

t1 : DHKeyPair t2: DHPubKey

TorAS=2 kas(t1,t2) : DHSecKey

Table 12. Type system - Typing rules (the environment is omitted)

24

private static void initRole(Channel_SSLChannelType ct,Rev_2KP_Roles role,
Map<String,Channel_Settings> cs,Map<String, String> aliases) {
[...]

Properties configFile = new Properties();
AnBx_Debug.out (layer,"Reading config file: "+configFileName.toString());
InputStream propertiesStream = Rev_2KP_CommandLine_Parser.class.
getResourceAsStream(configFileName) ;
if (propertiesStream != null) {
try
{

configFile.load (propertiesStream) ;
crypto_config = new Crypto_Config (configFile);
} catch (IOException e)

{
AnBx_Debug.out (layer ,"Error reading config file: "+
configFileName.toString ());
e.printStackTrace () ;
}
[...]
}

. reading, from the configuration file, the key path of the keystore, where keys and certificates can be
retrieved, and the location where pre-shared information can be found. Additionally, the alias of the
agent is set; this is necessary for self identification, for example to retrieve the private keys

private static void initRole(Channel_SSLChannelType ct,Revised_2KP_Roles
role ,Map<String,Channel_Settings> cs,Map<String, String> aliases) {
[...]
myAlias = configFile.getProperty(role.toString());
keypath configFile.getProperty ("keypath");
sharepath = configFile.getProperty("sharepath");

[...]
}

. the creation and the initialization of the communication channels. Parameters like the hostname, the
port, and the role played in the channel (client or server) are retrieved.

private static void initRole(Channel_SSLChannelType ct, Revised_2KP_Roles
role, Map<String, Channel_Settings> cs, Map<String, String> aliases) {
[...]
for (Rev_2KP_Roles peer : Rev_2KP_Roles.values()) {
if (configFile.getProperty(peer.toString()) != null) {
aliases.put(peer.toString (), configFile.getProperty(peer.toString()));

}
if (!peer.equals(role)) {
ch = channelName (role,peer);
String host = configFile.getProperty(ch + HOST_SUFFIX);
if (host != null) {
Integer port = Integer.parselnt(configFile.getProperty(ch +
PORT_SUFFIX));
if (configFile.getProperty(ch + ROLE_SUFFIX).equalsIgnoreCase("Client"
) A
cs.put (peer.toString () ,new Channel_Settings(ct, Channel_Roles.CLIENT
, host, port));
} else {
cs.put (peer.toString () ,new Channel_Settings(ct, Channel_Roles.SERVER
, host, port));
}
}
}

25

5. the creation of an object of class ProtName_Principal, according to the role the agent is playing,
and the invocation of its method run().

Rev_2KP_Principal Rev_2KP_pr = null;

Properties configFile = new Properties();
initRole(ct, role, cs, configFile, aliases);
if (myAlias != null && keypath != null) {

Rev_2KP_pr = new Rev_2KP_Principal(myAlias, keypath, cs, aliases,
crypto_config);

switch (role) {

case ROLE_C:
Rev_2KP_pr.run(new Rev_2KP_ROLE_C(role, protname, sharepath));
break;

case ROLE_M:
Rev_2KP_pr.run(new Rev_2KP_ROLE_M(role, protname, sharepath));
break;

case ROLE_a:
Rev_2KP_pr.run(new Rev_2KP_ROLE_a(role, protname, sharepath));

break;
}
} else {
AnBx_Debug.out (layer, "Unable to initialize Rev_2KP
Principal");
}
}

ProtName_Principal.java This class extends the library class AnB_Principal and holds the agent
knowledge about channels and cryptographic material (keys, certificates, aliases) and their parameters.
Once the principal is initialized a call to the superclass method run() executes the sequence of steps the
agent has to perform.

class Rev_2KP_Principal extends AnB_Principal {
public Rev_2KP_Principal (String myAlias, String path, Map<String,
Channel_Settings> cs, Map<String, String> aliases, Crypto_Config config) {
super (myAlias, path, cs, aliases, config);

}

ProtName_Role_<X>.java This class which extends the library class AnB_Protocol (Figure 12) is the
core of the application. One file is generated for each role, where <X> is replaced with the role name. The
method run() initialize the communication channels and executes the steps of the protocol. The two
parameters of run() are the mapping of the communication channels and the mapping of role/aliases.
We show the portion of code of the agent playing the Merchant role (ROLE_M) who directly communicate
with two other agents, the customer (ROLE_C) and the acquirer (ROLE_a). Therefore the Merchant needs
to open two channels. Here the exceptions are also caught. In particular the ClassCastException is
raised if the incoming messages does not belong to the expected class, i.e., they do not have the expected
structure.

public void run(Map<String, AnB_Session> 1lbs, Map<String, String> aliases) {
this.aliases = aliases;
AnB_Session ROLE_M_channel_ROLE_C = lbs.get("ROLE_C”);
AnB_Session ROLE_M_channel_ ROLE_a lbs.get ("ROLE_a");
try {

init () ;
ROLE_M_channel _ROLE_C.0Open();
ROLE_M_channel_ROLE_a.Open();
do {
executeStep (ROLE_M_channel ROLE_C, Revised_2KP_Steps.STEP_0);
[...]

26

executeStep (ROLE_M_channel ROLE_C, Revised_2KP_Steps.STEP_7);
} while (loop);
ROLE_M_channel _ROLE_C.Close () ;
ROLE_M_channel _ROLE_a.Close();
} catch (ClassCastException e) {
AnBx_Debug.out (layer, "Message format type error - Program will
be terminated!");

[...]
}
} catch (Exception e) {
AnBx_Debug.out (layer, "Generic error - Program will be
terminated!");
[...1]
}

}

The method executeStep() executes the actions specified by each steps (sending, receiving, variable
assignments, checks on reception). The two parameters are the session s and the protocol step to be
executed. The AnB_Session (Figure 11) is a library class giving access both to the communication
channel and to the cryptographic functions. Several communication and cryptographic operations are
performed in these two protocol steps, including the checks on reception.

private void executeStep(AnB_Session s, Rev_2KP_Steps step) {
status (step);
switch (step) {
case STEP_O:
// C -> M,(-/-IM): [can(C):a],[Desc:M]
// C => M: {hmac(can(C),H3a) ,{H3a}pk (a), hmac (Desc,H3M) ,{H3M}pk (M) }pk (M)
VAR_M_RO = (Crypto_SealedPair) s.Receive();
VAR_M_DMROVPM = (AnBx_Params) s.decrypt(VAR_M_RO);
VAR_M_DJ4MDMROVPMVPM = (SecretKey) s.decrypt ((Crypto_SealedPair)
VAR_M_DMROVPM.getValue (3));
VAR_M_MDESCDJ4DMROVPMVPM = s.makeHmac(Desc,(SecretKey)
VAR_M_DJ4MDMROVPMVPM) ;
eqCheckL("0.1",(Crypto_ByteArray) VAR_M_DMROVPM.getValue (2),
VAR_M_MDESCDJ4DMROVPMVPM) ;
invCheckL("0.2",(Crypto_SealedPair) VAR_M_DMROVPM.getValue (1),
Crypto_SealedPair.class);
VAR_M_J1MDMROVPM = (Crypto_ByteArray) VAR_M_DMROVPM.getValue (0);
break;
case STEP_1:
// M -> cC,(emM|/C|-): TID,[Price,TID,[Desc:M],[can(C):al]
// M -> C: {C,SQN4,TID,hash (Price,TID, hmac (Desc,H3M) ,hmac (can(C),H3a))}inv
(sk(M))
TID = new String("TID"+"_"+sessionID);
Nx4 s.getSeqNumber () ;
VAR_M_HPRICETIDMJ1MDMROVPMMMDESCDJ4DMROVPMVPM = s.makeDigest (new
AnBx_Params (Price ,TID,VAR_M_J1IMDMROVPM,VAR_M_MDESCDJ4DMROVPMVPM)) ;
s.Send(s.sign(new AnBx_Params(aliases.get("ROLE_C"),Nx4,TID,
VAR_M_HPRICETIDMJ1MDMROVPMMMDESCDJ4DMROVPMVPM))) ;
TID = s.getSeqNumber ();
SQN4 = s.getSeqNumber () ;
s.Send(s.sign(new AnBx_Params(aliases.get("ROLE_C"),SQN4,TID,s.makeDigest(
new AnBx_Params(Price,TID,VAR_M_MDESCDJI4DMOVPMVPM, (Crypto_HmacPair)
VAR_M_DMOVPM.getValue (0))))));

break;
case STEP_2:
[...]
}

status (step);

27

ProtName_Setup.java This class is a support class which generates the data shared among agents before
the protocol execution. It uses serialization to write the objects in the location specified by the entry
sharepath in the application properties file.

[...]

// create shared knowledge objects

AnB_Crypto_Wrapper.writeObject (new String("Price"),sharepath+"Price.ser");
AnB_Crypto_Wrapper.writeObject(new String("Desc"),sharepath+"Desc.ser");
[...]

ProtName_Roles.java This enumeration class contains the list of roles (agents) participating in the
protocol.

public enum Revised_2KP_Roles {
ROLE_C, ROLE_M, ROLE_a
}

ProtName_Steps.java This enumeration class contains the list of steps of the protocols.

public enum Rev_2KP_Steps {
STEP_O, STEP_1, STEP_2, STEP_3, STEP_4, STEP_5, STEP_6, STEP_7
}

Configuration File The configuration file contains a set parameters that, along with the command line
arguments, are used to initialize the application. This file can be easily modified by the end user without
need to regenerate the code of the application. An example of configuration file is shown in Figure 7.
The parameters include the path where the keystore is located in the file system. The keystore contains
the keys and certificates of known agent. Moreover, the configuration file includes the mapping between
protocol roles and agent aliases, the setting of the communication channels and the parameters used to
initialize the cryptographic engine.

The path of the keystore, is used by the application to retrieve the key material which is used during
the execution. It is assumed that the format of the key store is compatible with the cryptographic settings
of the application. In general the application is designed to use the appropriate cryptographic algorithms
based on the keys type available in the keystore. In this database, keys and certificates are associated
to an alias which is used as an index to access to that cryptographic objects. It is hence necessary to
provide an explicit mapping between protocol roles and the alias of the agent who is actually playing
that specific role.

Channel parameters are used to initialize the TCP/IP sockets and they include the network role
(client or server), the port and the hostname. Note that the hostname is used only for the client channels,
because servers listen on a port in their own system, and they do not need that parameter to setup the
socket. The default value for the hostname is the localhost IP address (127.0.0.1) but it can be freely
changed if the user needs to run the processes on different machines. In this case every machine running
the protocol must have its own copy of the configuration file. For security reasons it is not advisable to
share the same file among different agents. Moreover, the client port and server port must match in order
to establish a communication.

Changing the cryptographic engine settings allows using different cipher schemes and parameters
without the need to regenerate the application. However, it is up to the user to check weather the
settings and the schemes are actually supported by their own systems.

5.4 Code Generation

The last phase of the process is the code emission. As we have seen, we do not only write the security
related code (the protocol logic) but also a complete application combining the information derived from
the optimized executable narration with the application template (the application logic).

As a first step we must reconcile the two logics. In practice, this is done binding the abstract view
of the types and the API calls with the concrete one. The binding depends on the target programming

28

Protocol: Rev_2KP
Java Config File:
Roles/Share

"C:/genAnBx/src/Rev_2KP/Rev_2KP.properties"

ROLESHARE = ROLE_C

Roles/Aliases

ROLE_C = alice

ROLE_M = bob

ROLE_a = charlie

Channels

ROLE_C_channel _ROLE_M_role Client
ROLE_C_channel _ROLE_M_host 127.0.0.1
ROLE_C_channel _ROLE_M_port 6666
ROLE_M_channel _ROLE_C_role Server
ROLE_M_channel _ROLE_C_host 127.0.0.1
ROLE_M_channel _ROLE_C_port 6666
ROLE_M_channel _ROLE_a_role Client
ROLE_M_channel _ROLE_a_host 127.0.0.1
ROLE_M_channel _ROLE_a_port 6669
ROLE_a_channel _ROLE_M_role Server
ROLE_a_channel _ROLE_M_host 127.0.0.1
ROLE_a_channel _ROLE_M_port 6669

Paths

keypath = C:/genAnBx/keygen_dual/
sharepath = C:/genAnBx/bin/Rev_2KP/

Cryptographic Engine default settings

cipherScheme = AES
asymcipherSchemeBlock = RSA
keySize = 128
keyGenerationScheme = AES
secureRandomAlgorithm = SHA1PRNG
hMacAlgorithm = HmacSHA1
messageDigestAlgorithm = SHA-1
keyAgreementAlgorithm = DH

Fig. 7. Protocol.Properties configuration file

language and on the support library. In our case the bindings are defined by the maps shown in Table
13. The abstract API calls are mapped to the concrete Java calls implemented by our AnBzJ library
(Section 6); the abstract Types are mapped to the concrete Java and library types.

Next, we use the JProtocol data and the bindings to generate syntactically correct Java statements
(or portions of them) to be injected in the application template. This task is performed with the support
of the HStringTemplate [37] library, the Haskell port of the StringTemplate Java library [38,39].

Figure 9 shows the template file (ROLE_x.st) for the ROLE_x class. Terms between the $ delim-
iters are the templates which are instantiated during the protocol generation. The task performed by
StringTemplate is to replace these templates with the actual code. For example

$fields:{nl|private $n.typeof$ $n.name$ = null;

18

is a template used to declare the private fields of the ROLE_x class. It is filled with the type and the
name of the each element taken from the fields component of JProtocol.
The resulting code for role Merchant in the revised 2KP protocol is the following:

private String Price = null;

private String Desc = null;

private String TID = null;

private Crypto_ByteArray Nx4 = null;
private Crypto_ByteArray Nx8 = null;
private Crypto_SealedPair VAR_M_RO = null;

29

abstract API call

AnBzJ /Java API calls

abstract Type

AnBxJ /Java Types

APISend Send SealedPair Crypto_SealedPair
APIReceive Receive SealedObject SealedObject
APIEncrypt(S) encrypt SignedObject ~ SignedObject
APIDecrypt decrypt HmacPair Crypto_HmacPair
APISign sign JHash Crypto_ByteArray
APIVerify verify AnBx Params AnBx_Params
APIHash makeDigest JString String
APIHmac makeHmac JObject Object
APISQN getSeqNumber JHmacKey SecretKey
APINonce getNonce JSymmetricKey SecretKey
APISymKey getSymmetricKey JNonce Crypto_ByteArray
APIHmacKey getHmacKey JSeqNumber Crypto_ByteArray
APIDHPubKey getKeyEx_PublicKey JDHBase DHParameterSpec
APIDHKeyPair getKeyEx_KeyPair JDHPubKey PublicKey
APIDHSecKey getKeyEx_SecretKey JDHKeyPair KeyPair
APIEqCheck eqCheck JDHSecKey SecretKey
APInvCheck invCheck JVarArgs Object ...
APIwffCheck wffCheck
Table 13. API and type bindings

private AnBx_Params VAR_M_DMROVPM = null;

private SecretKey VAR_M_DJ4MDMROVPMVPM = null;

private Crypto_ByteArray VAR_M_MDESCDJ4DMROVPMVPM = null;

private Crypto_ByteArray VAR_M_JIMDMROVPM = null;

private Crypto_ByteArray VAR_M_HPRICETIDMJ1IMDMROVPMMMDESCDJ4DMROVPMVPM = null;

private Crypto_SealedPair VAR_M_R2 = null;

private String VAR_M_R4 = null;

private Crypto_SealedPair VAR_M_R6 = null;

private SignedObject VAR_M_DMR6VPM = null;

private AnBx_Params VAR_M_DDMR6VPMUSA = null;

private String VAR_M_JS5MDDMR6VPMUSA = null;

private Crypto_ByteArray VAR_M_J6MDDMR6VPMUSA = null;

This example shows that StringTemplate does not provide just a simple string substitution but also
makes possible to use more complex patterns like attributes with properties ($n.name$). Moreover, it al-
lows applying an anonymous template ({n|private $n.typeof$ $n.name$ = null;}) to each element
of an attribute ($fields:<anonymoustemplate>$).

Following the same approach it possible to generate even more structured code. This is how the
method executeStep() is specified in the same template file ROLE_X.st

protected void executeStep (AnB_Session $sessname$, $prot$_Steps step) {
status (step);
switch (step) {
$stepactions:{n|
case $n.astep$:

$n.action$

30

break;
}$
}
status (step);
}

In this case, along with simple substitutions of the session ($sessnane$) and protocol name ($prot$),
we can use an anonymous template - {n| ...} - to generate the cases of the switch statement, namely
the actions ($n.action$) to be performed in each step ($n.astep$). Here, we found more productive
to directly generate a sequence of actions as a string in Haskell and pass it to the template property
$n.action$ rather than managing templates for all the kind of possible actions.

Finally, the generated configuration and application files are written to the disk. As an example of
this, we show the names of files (left side the template name, right side the application name) for the
revised 2KP protocol (roles are: A acquirer, M merchant, C customer):

— CommandLine_Parser.st -> Rev_2KP_CommandLine_Parser. java

— Principal.st -> Rev_2KP_Principal.java

— ROLE_x.st -> Rev_2KP_ROLE_A.java, Rev_2KP_ROLE_M.java, Rev_2KP_ROLE_C.java
— Roles.st -> Rev_2KP_Roles.java

— Steps.st -> Rev_2KP_Steps.java

— main.st -> Rev_2KP. java

— setup.st -> Rev_2KP_Setup. java

— [1 -> Rev_2KP.properties

— [0 -> build.xml

The build.xml file is an Ant build file which allows compiling, running and testing the application. In
particular the target run can be used to run in parallel all the agent’s programs in order to verify that
the application is executable. All the Java files must belong to the same package (rev_2kp in this case).

Ultimately, one of the advantages of this approach of code generation is that it is possible to change
the application templates without need to adapt the tool, as long as the template interface (parameters)
is maintained. On the one hand, we think this is an advantage for the user because he has the possibility
to work on the application template in the target language. One the other hand, the generation of code
in another procedural typed language would require a reasonable extra effort and would consist of the
following tasks:

— writing new templates files

— defining the syntax of statements like variable declaration, variables initialization (constructors),
imperative actions

— setting the binding between the abstract types and the API calls and the concrete one.

A prerequisite would be the availability of a security and communication library similar to the one we
designed. Since all the modern programming languages offer these features, the work would consist of
building a wrapper library, around the existing language features, having the same interface of our library
(Figures 10 and 11).

6 API - Java Security Library (AnBzJ)

We developed a Java library to experiment with our approach and validate its practical effectiveness.
The package provides an application programming interface (API) that implements the primitives dis-
cussed in the previous sections. To support a high degree of flexibility, the API does not commit to any
specific cryptographic solution (algorithms, libraries, providers). Instead, it is structured as a modular,
easily configurable framework that leaves the developer free (at compile, deployment or even at runtime)
to decide which cryptographic scheme to use, according to the security, robustness and performance
requirements the application must satisfy. By default for asymmetric encryption, the system uses the
algorithms and the key lengths specified in the digital certificates of the public keys used for encryption
and signature. For the symmetric encryption the pre-set schemes can be changed by the user editing the
configuration file. This simplifies the practical use of the library.

31

APPLICATION

Protocol Layer run() init() executeStep() {eq,inv,wff} Check() abort()

steps agents roles

- open() close() | send() receive()

sessions identities channels
C sign() verify() | encrypt() decrypt() | hash() hmac()
rypto Layer
RSA DSA AES 3DES SHA-1 MDS DH PKI tools ...
Transport Layer opsn() close() | send() receive()
plain socket secure socket (SSL/TLS)

NETWORK

Fig. 8. AnBzJ Java Library Architecture

Several encryption and digital signature algorithms, hash and digest functions, and different key sizes
are made available to the application by means of a standard interface. This is done by interacting
with the cryptographic libraries, almost transparently, using the standard interface specified by the Java
Cryptographic Architecture [22,23]. Changing the cryptographic protocols and settings is easy, because it
does not modify the source code of the application, but only the configuration of the encryption engine in
use. The framework is extensible making possible to add new cryptographic libraries, or replacing faulty
implementation, or compromised algorithms. This approach leads to a clear design of the application,
focusing on the application logic, abstracting the programmer from the complexity of the underlying
network protocols and infrastructure. Communication and cryptographic run-time errors are handled at
this level, and exceptions are raised.

The API is structured in the layered architecture described in Figure 8, whose main components are
described as follows:

— The transport layer provides all the networking functionality necessary to transport messages over the
network, using both plain and secure sockets (SSL/TLS). Although the enforcement of the security
properties is often delegated to the cryptographic layer, is it also possible to run applications over a
secured channel rather than over a plain one.

— The cryptographic layer essentially provides procedures to encrypt and decrypt, sign and verify,
digest messages using the facilities included in libraries like java.security and javax.crypto. The
public key infrastructure (PKI) binds public keys with their respective user identities by means of
a certificate authority (CA). Trusted certificates are stored in keystores, and identities are defined
associating aliases with a pair of public keys (one for encryption and one for digital signature).

— The session layer offers the functions send() and receive(), which map, respectively, the output
and the input primitives. Any serializable object can be a message exchanged by means of these
primitives, thus it is possible to transmit a wide range of object classes across a network connection
link. Primitives to open() and close() sessions are also provided. Moreover, shielding the details of
the cryptographic layer, the AnB_session class (Figure 11) offers methods for calling, in a simplified
manner, the primitives of the cryptographic layer extending the class AnB_Crypto_Wrapper (Figure
10).

— The protocol layer gives an abstract description of the protocol: data flow and control flow, steps
and principal roles, checks on reception. The main class is the abstract generic class AnB_protocol
(Figure 12) which must be extended by each role class.

7 Related Work and Conclusions

Other Java code generators for security protocols have been proposed in the past. An early project
[40] allows for automatic generation of Java code from a specification written in CASPL [41] or in its
intermediate language CIL. Although standard Java cryptographic providers are used, this tool has some
noticeable limitations. Since at that time a RSA implementation was not publicly available in Java, the
tool does not handle public-key encryption. AG VT [15] is another of the earliest tools which generates the
Java implementation of a security protocol. It also generate security protocols from user requirements but

32

when dealing with complex security protocols, may suffer from state space explosion problem. Spi2Java
[17] is a framework to semi-automatically generate Java security protocol implementations from verified
Spi Calculus formal specifications. The aim of the framework is to provide high correctness confidence
on the generated code, thus making a step towards bridging the gap between the verified abstract formal
models, and their concrete implementations. JavaSPI [18] is an evolution of Spi2Java. The main novelty
of this approach stands in the use of Java as both a modeling language and an implementation language.
The tool is able to generate interoperable code by implementing serialization and marshaling methods
that must be implemented manually. Expi2Java [19], which started as an extension of Spi2Java, takes
models of security protocols written in Expi culculus (an extensible variant of Spi culculus) and translate
them into interoperable Java code.

With respect to the these tools, our compiler generates Java code which includes the checks on
reception. We think this is very important to build defensive implementations of security protocols and
has a practical impact. However, this makes difficult to compare the compile time performance with
other tools because in [15,17,42,19] the checks must be written manually. In [40] there is a notion of
“receivability” which only models the ability to decrypt the received messages but does not compute
other checks. In contrast to the tools requiring process calculi as input language [17,42,19], we use a
more intuitive language AnB, making our tool suitable for a larger audience of developers. In addition,
our abstract specification is the most compact. Using SPI requires long specification files [19] and type
annotations, [40] requires type annotations as well. Instead, we use a simple naming convention to make
the protocol specification extremely succinct and the tool delegates the duty to generate well-typed code
to the type system.

Future work could take several directions. It would be important to make a formal proof of the sound-
ness of the translation process. Our abstract models are verified with OFMC and a starting point could
be to use the existing semantics [14,27] to complete the formalization of the compiler front-end. Another
important extension could be the generation of interoperable implementations. We think that the most
effective way is to use custom serialization methods as in [17,18], but they require manual coding. A fur-
ther opportunity would be to plug the tool into an existing Integrated Development Environment (IDE),
such as Eclipse [43], making the AnBz compiler suitable to be used and tested in a more professional
environment.

Acknowledgments Part of this work was carried out while the author was a Ph.D. candidate at
Universitd Ca’ Foscari Venezia (Italy), under the valuable supervision of Prof. Michele Bugliesi. This
work was partially supported by the EU FP7 Project n. 318424, “FuturelD: shaping the Future of
Electronic Identity” (futureid.eu). The author wishes to thank Thomas Grof for his helpful discussions
and comments.

References

1. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol implementations: a survey. Formal
Aspects of Computing 26(1) (2014) 99-123

2. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The most dangerous code in the
world: validating SSL certificates in non-browser software. In: Proceedings of the 2012 ACM conference on
Computer and communications security, ACM (2012) 38-49

3. Langley, A.: Unfortunate current practices for HTTP over TLS (2011) http://www.ietf.org/mail-
archive/web/tls/current /msg07281.html.

4. Poll, E., Schubert, A.: Verifying an implementation of SSH. In: WITS. Volume 7. (2007) 164-177

5. Cassidy, S.: Existential type crisis : Diagnosis of the OpenSSL Heartbleed Bug (2014)
http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-bug.html.

6. Ducklin, P.: Anatomy of a ”goto fail” - Apple’s SSL bug explained, plus an unofficial patch for
OS X! (2014) http://nakedsecurity.sophos.com/2014/02/24 /anatomy-of-a-goto-fail-apples-ssl-bug-explained-
plus-an-unofficial-patch/.

7. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: Computer Security
Foundations Workshop, IEEE, IEEE Computer Society (2001) 0082—-0082

8. Basin, D., Médersheim, S., Vigano, L.: OFMC: A symbolic model checker for security protocols. International
Journal of Information Security 4(3) (2005) 181-208

33

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A., Carbone, R., Chevalier, Y.,
Compagna, L., Cuéllar, J., et al.: The AVANTSSAR platform for the automated validation of trust and
security of service-oriented architectures. In: Tools and Algorithms for the Construction and Analysis of
Systems. Springer (2012) 267-282

Cremers, C.J.: The scyther tool: Verification, falsification, and analysis of security protocols. In: Computer
Aided Verification, Springer (2008) 414-418

Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus. In: Proceedings of the 4th
ACM Conference on Computer and Communications Security, ACM (1997) 36-47

Maodersheim, S.: Algebraic properties in Alice and Bob notation. In: International Conference on Availability,
Reliability and Security (ARES 2009). (2009) 433-440

Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik, G., Van Herreweghen,
E., Waidner, M.: Design, implementation, and deployment of the iKP secure electronic payment system.
IEEE Journal on Selected Areas in Communications 18(4) (2000) 611-627

Briais, S., Nestmann, U.: A formal semantics for protocol narrations. Theor. Comput. Sci. 389 (December
2007) 484-511

Song, D., Perrig, A., Phan, D.: Agvi-automatic generation, verification, and implementation of security
protocols. In: Computer Aided Verification, Springer (2001) 241245

Jeon, C.W., Kim, I.G., Choi, J.Y.: Automatic generation of the C# code for security protocols verified with
Casper/FDR. In: Advanced Information Networking and Applications, 2005. AINA 2005. 19th International
Conference on. Volume 2., IEEE (2005) 507-510

Pozza, D., Sisto, R., Durante, L.: Spi2Java: Automatic cryptographic protocol Java code generation from
spi calculus. In: Proceedings of the 18th International Conference on Advanced Information Networking and
Applications-Volume 2, IEEE Computer Society (2004) 400

Avalle, M., Pironti, A., Sisto, R., Pozza, D.: The JavaSPI framework for security protocol implementation.
In: Availability, Reliability and Security (ARES 11), IEEE Computer Society, IEEE Computer Society (2011)
746-751

Backes, M., Busenius, A., Hritcu, C.: On the development and formalization of an extensible code generator
for real life security protocols. In: NASA Formal Methods. Springer (2012) 371-387

Bugliesi, M. and Modesti, P.: AnBx-Security protocols design and verification. In: Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of Security: Joint Workshop, ARSPA-WITS 2010,
Paphos, Cyprus, 2010, Revised Selected Papers, Springer-Verlag (2010) 164-184

Bella, G., Massacci, F., Paulson, L.: Verifying the SET purchase protocols. Journal of Automated Reasoning
36(1) (2006) 5-37

Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture, Api Design, and Imple-
mentation. Addison-Wesley (2003)

Pistoia, M., Nagaratnam, N., Koved, L., Nadalin, A.: Enterprise Java 2 Security: Building Secure and Robust
J2EE Applications. Addison Wesley (2004)

Hailpern, B., Tarr, P.. Model-driven development: The good, the bad, and the ugly. IBM systems journal
45(3) (2006) 451-461

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma, P.H., Héam, P.C.,
Kouchnarenko, O., Mantovani, J., et al.: The AVISPA tool for the automated validation of internet security
protocols and applications. In: Computer Aided Verification, Springer (2005) 281-285

Paolo Modesti: Verified Security Protocol Modeling and Implementation with AnBx. PhD thesis, Universita
Ca’ Foscari Venezia (Italy) (2012)

Bugliesi, M. and Calzavara, S. and Mdodersheim, S. and Modesti, P.: Security protocol specification and
verification with AnBx. Under review (2013)

Paolo Modesti: Efficient Java code generation of security protocols specified in AnB/AnBx. Technical Report
CS-TR-1422, School of Computing Science, Newcastle University (2014)

Apache Foundation: The Apache Ant Project http://ant.apache.org.

Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik, G., Waidner, M.: iKP
a family of secure electronic payment protocols. In: Proceedings of the 1st USENIX Workshop on Electronic
Commerce. (1995)

Bella, G., Massacci, F., Paulson, L.: An overview of the verification of SET. International Journal of
Information Security 4(1) (2005) 17-28

Denker, G., Millen, J.: CAPSL and CIL language design. Technical Report SRI-CSL-99-02, SRI International
Computer Science Laboratory (1999)

Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. ACM SIGPLAN Notices
36(3) (2001) 104-115

Ferguson, N., Schneier, B.: Practical cryptography. Wiley New York (2003)

Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of applied cryptography. CRC (1997)

Schneier, B., Sutherland, P.: Applied cryptography: protocols, algorithms, and source code in C. John Wiley
& Sons, Inc. (1995)

34

37.
38.

39.

40.

41.

42.

43.

Clover, S.: HStringTemplate www.haskell.org/haskellwiki/HString Template.

Parr, T.: A functional language for generating structured text. (2006) www.cs.usfca.edu/ parrt/paper-
s/ST.pdf.

Parr, T.: Enforcing strict model-view separation in template engines. In: Proceedings of the 13th international
conference on World Wide Web, ACM (2004) 224-233

Millen, J., Muller, F.: Cryptographic protocol generation from CAPSL. Technical Report SRI-CSL-01-07,
SRI International (December 2001)

Denker, G., Millen, J., Ruef3, H.: The CAPSL integrated protocol environment. Technical Report SRI-CSL-
2000-02, SRI International, Menlo Park, CA (2000)

Tobler, B., Hutchison, A.: Generating network security protocol implementations from formal specifications.
Certification and Security in Inter-Organizational E-Service (2005) 33-54

Eclipse Foundation: Eclipse IDE http://www.eclipse.org.

35

Alpha == ['A"./Z"|u['d..'2"]

Ident ::= Alpha + String
Agent ::= Ident
IdentList ::= Ident

Ident, IdentList

alpha chars
Alpha C String
identi fier

agent’s name

list of identifiers

Opererator ::= inv inverse function
| exp exponential function
| crypt asymmetric encryption
| scrypt symmetric encryption
| cat concatenation
| xor xor
| apply function application
Msg ::= Ident identifier
| Operator MsgList operator on msg list
MsgList ::= Msg list of messages
| Msg, MsgList
Type ::= Agent base types
| Number
| Function
| PublicKey
| Symmetic_key
TypeList ::= Type IdentList list of types
| Type IdentList; TypeList
Types ::= Types : TypeList types
Knowltem ::= Agent : Msg
KnowlList ::= Knowltem list of agents’ know.
Knowltem; KnowList
Knowledge ::= Knowledge : KnowList knowledge
Action ::= Agent ChType Agent : M sg action
ActionList ::== Action list of actions
| Action; ActionList
Actions ::= Actions : ActionsList actions
ChType := — | o — plain | authentic
| —eje—e secret | secure
| o — fresh authentic
| e—e fresh secure
Goal ::= Agent ChMode Agent : M sg channel goal
| Agent weakly authenticates Agent on Msg weak authentication goal
| Agent authenticates Agent on Msg authentication goal
| Msg secret between AgentList secrecy goal
Goals ::= Goal goals

Goal; Goals
Protocol ::= Protocol Ident
Types Knowledge Actions Goals

protocol de finition

Table 14. Syntax of AnB

36

Alpha

alpha chars

Ident ::= ..] identifier
IdentList ::=[...] list of identifiers
Opererator ::=|..] operators
Agent ::= Ident agent's name
| '~ null agent
AgentList ::= Agent list of agents
| Agent, AgentList
Type == |..] base types
| Certified certified agent
Def ::= Ident (IdentList) : Msg de finition w pars
Ident : Msg de finition w/o pars
DefList ::= Def list of definitions
Def; DefList
Defs::=¢€ empty de finitions
| Definitions : Def List non empty de finitions
Digest ::= [MsgList] standard digest
| [MsgList: Agent] verifiable digest
Msg ::= Ident identi fier
| Operator MsgList operator on msg list
| Digest digest
| PPar Ident MsgList de finition w pars in msg
| PParldIdent de finition w/o pars in msg
Knowltem ::= Agent : Msg agent's knowledge
| IdentListshare MsgList
KnowlList ::= Knowltem list of agent’s knowledge
| Knowltem; KnowList
Knowledge ::= Knowledge : KnowList knowledge
Action ::= Agent ChType Agent : M sg AnB action
| Agent — Agent, ChMode : Msg AnBzx action
ActionList ::= Action list of actions
| Action; ActionList
Actions ::= Actions : ActionsList actions
fresh :==¢€| @ emtpy | fresh
forward :=¢€| T empty | forward (opt.)
Vers ::= AgentList verifiers
ChMode ::= forward fresh(Agent, Vers, Agent) AnBz channel modes
ChType == [..] AnB channel types
Goal == ..] goal
| Agent confidentially sends M sg to Agent confidential exchange
Goals == [..] goals

Protocol ::= Protocol Ident
Defs Types Knowledge Actions Goals

protocol de finition

Table 15. Syntax of AnBz defined as an extension to the standard syntax of AnB ([...])

Reserved identifiers ::= pk public key function for encryption
| sk public key function for encryption
| hash hash function

| hmac hmac function

| g DH base

|

empty syncmessage

Table 16. Syntax of AnBzx - Reserved identifiers

37

public final class $prot$_$role$ extends AnB_Protocol<$prot$_Steps,$prot$_Roles
> {
private static boolean loop = false;
private static long $sessionID$ = O;
// local knowledge - constants
$fieldsstatic:{n|private static $n.typeof$ $n.name$ = $n.pars$;
1%
// local wars
$fields:{nlprivate $n.typeof$ $n.name$ = null;

13
public $prot$_$role$ ($prot$_Roles role, String name) {
super () ;
this.role = role;
this.name = name;

this.sharepath = sharepath;
$sessionID$++;
}
protected void init () {
// init shared wvars
$fieldsinit:{n| $n.name$ = ($n.typeof$) AnB_Session.readObject(sharepath+\"
$n.name$$serExt$\");

}8$3;
public void run(Map<String, AnB_Session> lbs, Map<String, String> aliases) {
this.aliases = aliases;
$channelroles:{n|AnB_Session $n.chname$ = lbs.get (\"$n.chrole$\");
1$
try {
init O ;
$channels:{n|$n$.0pen();
13
do {
$channelsteps:{nlexecuteStep($n.channel$, $prot$_Steps.$n.step$);
13

} while (loop);
$channels:{n|$n$.Close();
18

} catch (ClassCastException e) {
[...]
} catch (Exception e) {
[...]
}
3
protected void executeStep(AnB_Session $sessname$, $prot$_Steps step) {
status (step);
switch (step) {
$stepactions:{nl
case $n.astep$:
$n.action$
break;
13
}
status (step);
}
$rolemethods:{n|private $n.rettype$ $n.mname$ ($n.mpars$) {
// TODO Auto-generated method stub
return ($n.rettype$) $n.retvalue$;
\}13$

Fig. 9. Role_X.st file template

38

public class AnB_Crypto_Wrapper {
// implements a class supporting cryptographic operations
// a wrapper for the encryption engine

protected Crypto_EncryptionEngine ee;

protected AnBx_Agent me;

private final static AnBx_Layers layer = AnBx_Layers.LANGUAGE;

public AnB_Crypto_Wrapper (Crypto_EncryptionEngine ee)

public AnB_Crypto_Wrapper (Crypto_KeyStoreSettings_Dual kssd)

public AnB_Crypto_Wrapper (Crypto_KeyStoreSettings_Dual kssd,Crypto_Config
config)

public Crypto_KeyStoreSettings_Dual getKeyStoreSettings_Dual ()

public void Setup(Crypto_KeyStoreSettings_Dual kssd)

public void Setup(Crypto_KeyStoreSettings_Dual kssd,Crypto_Config config)

public static void getInfo ()

[/ mmmmmmmm e m e m e cert/identities ——-—----—----------------
protected Certificate getRemoteCertificate_enc(String alias)

protected Certificate getRemoteCertificate_sig(String alias)

protected AnBx_Agent getMyIdentity ()

protected void setMyIdentity ()

[/ mmmmmmmm e send/receive ——-——-—--—----—-——-—————-—--—-
protected void Send_Id (AnBx_Agent id, Channel_Abstraction c)

protected void Send(Object obj, AnBx_Agent id, Channel_Abstraction c)
protected Object Receive (AnBx_Agent id, Channel_Abstraction c)

protected AnBx_Agent Receive_RemoteId(Channel_Abstraction c)

[/ mmmmmmmmm e mmmmm oo encrypt/decrypt ——----—---——---———-——--—-—---
public Object decrypt(Crypto_SealedPair sc)

public Crypto_SealedPair encrypt(Object object, String alias)

public Object decrypt(SealedObject so, Key symmetricKey)

public SealedObject encrypt(Object object, Key symmetricKey)

[/ mmmmmm s sign/verify -—-—---------------—----—-

public SignedObject sign(Object object)

public Object verify(SignedObject so, String alias)

[/ e m e m - nonces, keys, seqnumbers -——--—-—-—-—-—-—-——-——-—-——
public Crypto_ByteArray getNonce ()

public Crypto_ByteArray getSeqNumber ()

public SecretKey getSymmetricKey ()

public SecretKey getHmacKey ()

[/ e m e key exchange —--——-———-———————————————~—"——~—~——~—~———
public KeyPair getKeyEx_KeyPair ()

public PublicKey getKeyEx_PublicKey(KeyPair keyPair)

public SecretKey getKeyEx_SecretKey(KeyPair keyPair, PublicKey publicKey)
public SecretKey getKeyEx_SecretKey(PublicKey publicKey, KeyPair keyPair)
[/ —mmmmmmmm e digest hash/hmac ————-———=—-—-—————————————~——~———-
public Crypto_ByteArray makeDigest(Object obj)

public Crypto_ByteArray makeDigest(Object obj, String str)

public Crypto_ByteArray makeHmac (Object obj, SecretKey sk)

[/ mmmmmmm e m e serialization —--——————-—--—-——-——-—————-—-———————-
public static void writeObject(Object obj, String filename)

public static Object readObject(String filename)

}

Fig. 10. AnBzJ: Crypto API (AnB_Crypto_Wrapper class)

39

public class AnB_Session extends AnB_Crypto_Wrapper {
// implements a session supporting cryptographic operations

private final static AnBx_Layers layer = AnBx_Layers.SESSION;
private Channel_Abstraction c;

private AnBx_Agent id_Remote = null;

private Boolean exchange_id = false;

// allow agents to exzchange their aliases

public AnB_Session(Crypto_KeyStoreSettings_Dual kssd, Channel_Settings cs,
boolean exchange_id, Crypto_Config config)

public AnB_Session(Crypto_KeyStoreSettings_Dual kssd, Channel_Settings cs,
AnBx_Agent id_Remote, Crypto_Config config)

public AnB_Session(Crypto_KeyStoreSettings_Dual kssd, Channel_Settings cs,
String id_Remote_alias, Crypto_Config config)

void initChannels (Channel_Settings cs)

/) mmmmmmmmm e open/close ——=———-—----------—----
public void Open()
public void Close ()

public Object Receive ()

public void Send(Object obj)

public AnBx_Agent Receive_RemoteId ()

public void Send_Id()

[/ —mmmmmmmm e setters/getters —--——-——-—--—---—-—————-—--——-
public Channel_Abstraction getC()

public AnBx_Agent getId_Remote ()

public void setC(Channel_Abstraction c)

public void setId_Remote (AnBx_Agent id_Remote)

}

Fig.11. AnBzJ: Communication API (AnB_Session class)

public abstract class AnB_Protocol<S, R> {

private final static AnBx_Layers layer = AnBx_Layers.PROTOCOL;
protected String name = null;

protected String sharepath = null;

protected R role;

protected Map<String, String> aliases;

private boolean abortOnFail = false;

private enum CheckType {EQ,INV,WFF;};

abstract public void run(Map<String, AnB_Session> 1lbs, Map<String, String>
aliases);

abstract protected void executeStep(AnB_Session 1lbs, S step);

abstract protected void init ();

protected void abort(String msg)

protected void eqCheck(Object objl, Object obj2)
protected void invCheck(Object objl, Object obj2)
protected void invCheck(Object obj, Class<?> cls)
protected void wffCheck (Object obj)

protected void status(S step)

}

Fig.12. AnBzJ: AnB_Protocol class

40

	TR1922Cover
	TR1922Abstract
	TECHNICAL REPORT SERIES
	Abstract

	TR1922Bibliography
	TR1422 withoutcovers

