Automatic Generation
of Security Protocols Implementations

(Extended Abstract)

Paolo Modesti

School of Computing Science, Newcastle University, UK
paolo.modesti@newcastle.ac.uk

Abstract. The implementation of security protocols is challenging and
error-prone. A model-driven development approach allows the automatic
generation of an application, from a simpler and abstract model that can
be formally verified. Our AnBx compiler is a tool for automatic genera-
tion of Java code of security protocols specified in the Alice&Bob nota-
tion. In contrast with existing tools, it uses a simpler specification lan-
guage and computes the consistency checks that agents have to perform
on reception of messages. Moreover, the tool applies various optimization
strategies to achieve efficiency both at compile and run time.

The implementation of security protocols is challenging and error-prone, as
experience has shown that even widely used and heavily tested protocols like
TLS and SSH need to be patched every year due to low-level implementation
bugs. Moreover, bugs like “Heartbleed” (OpenSSL) [1] and “goto fail” (Apple TLS
implementation) [2] have shown that missing (or untested) checks, hidden deep
in the code, may have a severe impact. The critical aspect is that the high-
level security properties of a protocol must be hard-coded explicitly, in terms of
low-level cryptographic operations and checks of well-formedness.

To counter this problem, we propose a model-driven development approach
that allows for automatic generation of an application, from a simpler and ab-
stract model that can be formally verified. Our AnBzx Compiler and Code Gen-
erator® [3], is a tool for automatic generation of Java code of security protocols
specified in the popular Alice & Bob notation, suitable for agile prototyping.
From the design perspective, working on a simplified abstract model has proven
to be very effective. It not only allows reasoning about the high-level security
property, abstracting from the low-level details of the cryptographic implemen-
tation, but it also helps to reduce the problem to a size that can be handled
efficiently by automatic verification tools.

However, in order to build robust implementations, it is necessary to define
explicitly which (defensive) consistency checks on the received data need to be
performed to verify that the protocol is running according to the specification. It
is important to recognize that while some checks on reception are trivially derived

! Available at http://www.dais.unive.it/ modesti/anbx/



2 Paolo Modesti

from the narrations (verification of a digital signature, comparison of agent’s
identities), others are more complex and managing them can be a challenging
task even for an expert programmer.

In addition to the main contribution of an end-to-end AnB to Java compiler,
we also present an improved way to compute the checks on reception with respect
to a previous solution proposed by Briais and Nestmann [4]. This allows reducing
the compilation time (in one case even from days to seconds), preventing space
state explosion problems in the optimization phase, and increasing the execution
speed. The tool also supports the AnBz language [5], an extension of AnB to be
employed for a purely declarative modelling of distributed protocols.

Architecture of the Compiler

The automatic Java code generation of security protocols comprises several
phases. A detailed description of the architecture of the tool, which is devel-
oped in Haskell, is given in [6] and can be summarized as follows:

Pre-Processing and Verification AnBz — AnB — (verification)

The AnBz protocol is lexed, parsed and then compiled to AnB [7], a format
suitable for verification with the external tool OFMC [8], a state of the art
model checker which is part of the AVISPA [9] platform. The compiler can also
directly read protocols in AnB. AnBz and its translation to AnB have already
been described in other works [5,6,10], but we point out that translation from
AnBz to AnB can be parametrized using different channel implementations that
realize the security properties, specified at the channel level, by means of different
cryptographic operations.

Front-end AnB — EzecNarr — Opt-ExecNarr

After verification, if the protocol is deemed safe, the AnB specification can
be compiled into an ezecutable narration (ExecNarr), a set of actions that gives
an interpretation of how the protocol participants are expected to execute the
protocol. The core of this phase is the automatic generation of the consistency
checks derived from the static information of protocol narrations. We build our
generation of the checks on the method proposed by Briais and Nestmann [4], ex-
tending the language making possible to model a wider and more realistic range
of applications, and improving the algorithm in order to improve dramatically
the performance for large e-commerce protocols like SET [11] and iKP [12], as
detailed in [3].

The optimized executable narration (Opt-EzecNarr) goes further and ap-
plies some optimization techniques, including common subexpression elimination
(CSE), which in general are useful to generate efficient code. We identify the set
of cryptographic operations, which are computationally expensive, and optimize
the code, in order to reduce the overall execution time. To this end, we instan-
tiate variables to store partial results, and reorder assignment instructions with
the purpose of minimizing the number of cryptographic operation performed.



Automatic Generation of Security Protocols Implementations

Back-end Opt-EzecNarr — (protocol logic) 4 (application logic) — Java

The final result of the compilation is the generation of the Java source code
from the Opt-EzecNarr. The previous phases are fully language independent
and therefore does not require any adaptation whatever target programming
language is considered. In addition, in the back-end we have postponed any lan-
guage dependent decision in order to increase the compiler’s portability and sim-
plify re-targeting, as long as other object oriented and procedural programming
languages are used. We summarize the main features and components below:

Code generation strategy We make a distinction between the protocol logic
and the application logic. The latter is implemented by means of parametrized
application template files written in the target language. The templates are in-
stantiated with the information (the protocol logic) derived from the optimized
executable narration. We model the protocol logic by means of a language in-
dependent intermediate format called Typed-Opt-ExecNarr, which is in essence
a typed representation of the Opt-EzxecNarr. This is useful to parametrize the
translation and to make it easier to emit code in other programming languages.

Type System Building the Typed-Opt-EzecNarr requires a type system mod-
eling a typed abstract representation of the security-related portion of a generic
procedural language supporting a rich set of abstract cryptographic primitives.
The type system infers the type of expressions and variables and insures that
the generated code is well-typed. It has the additional benefit of detecting at run
time whether the structure of the incoming messages is coherent with the one
specified by the narration.

Verification of the implementation The Typed-Opt-ExecNarr can be trans-
lated in applied-pi, and then verified with Proverif [13]. However, this requires
that the AnB security goals are analyzed and specific facts, modeling the security
properties, are generated along the compilation chain.

Code emission The code emission is performed by instantiating the protocol
templates, i.e., the skeleton of the application, with the information derived from
the protocol logic. It is worth noting that only at this final stage the language
specific features and their APT calls are actually bound to the protocol logic. To
this end two mappings are required. One between the abstract and the concrete
types; another one between the abstract actions and the concrete API calls.
It is important to underline that the application templates are generic, i.e.,
independent from the specific protocol, and can be modified by the user in order
to fit his application domain.

Security API The run-time support relies on the cryptographic services of-
fered by the Java Cryptography Architecture (JCA) [14,15]. In order to connect
to the JCA, we designed an API for security which wraps, in an abstract way,
the JCA interface and implements the custom classes necessary to encode the
generated programs in Java. The AnBzJ library offers a high degree of generality
and customization, since the API does not commit to any specific cryptographic
solution (algorithms, libraries, providers). Moreover, the library provides access
in an abstract way to the communication primitives used to exchange messages
in the standard TCP/IP network environment. The generated code comes along



Paolo Modesti

with a configuration file that allows the developer to fully customize the deploy-
ment of the application at the cryptographic (keystore location, aliases, cipher
schemes, key lengths, etc) and network level (IP addresses, ports, etc) without
requiring to regenerate the application.

In summary, the tool allows for a one-click code generation of widely config-

urable and customizable ready-to-run Java applications from an AnBx or AnB
specification.

References

10.

11.

12.

13.

14.

15.

Cassidy, S.: Existential type crisis : Diagnosis of the OpenSSL Heartbleed
Bug (2014) http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-
bug.html.

. Ducklin, P.: Anatomy of a "goto fail” - Apple’s SSL bug explained, plus an unofficial

patch for OS X! (2014) http://nakedsecurity.sophos.com/2014/02 /24 /anatomy-of-
a-goto-fail-apples-ssl-bug-explained-plus-an-unofficial-patch/.

Modesti, P.: Efficient Java code generation of security protocols specified in
AnB/AnBx. In: Security and Trust Management - 10th International Workshop,
STM 2014, Proceedings. (2014) 204-208

Briais, S., Nestmann, U.: A formal semantics for protocol narrations. Theoretical
Computer Science 389 (2007) 484-511

Bugliesi, M. and Modesti, P.: AnBx-Security protocols design and verification. In:
ARSPA-WITS 2010. (2010) 164-184

Paolo Modesti: Efficient Java code generation of security protocols specified in
AnB/AnBx. Technical Report CS-TR-1422, Newcastle University (2014)
Modersheim, S.: Algebraic properties in Alice and Bob notation. In: International
Conference on Availability, Reliability and Security (ARES 2009). (2009) 433-440
Basin, D., Mddersheim, S., Vigano, L.:. OFMC: A symbolic model checker for
security protocols. Int. Journal of Information Security 4(3) (2005) 181-208
Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J.,
Drielsma, P.H., Héam, P.C., Kouchnarenko, O., Mantovani, J., et al.: The AVISPA
tool for the automated validation of internet security protocols and applications.
In: Computer Aided Verification, Springer (2005) 281-285

Paolo Modesti: Verified Security Protocol Modeling and Implementation with
AnBx. PhD thesis, Universita Ca’ Foscari Venezia (Italy) (2012)

Bella, G., Massacci, F., Paulson, L.: Verifying the SET purchase protocols. Journal
of Automated Reasoning 36(1) (2006) 5-37

Bellare, M., et al.: Design, implementation, and deployment of the iKP secure
electronic payment system. IEEE JSAC 18(4) (2000) 611-627

Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Computer Security Foundations Workshop, IEEE, IEEE Computer Society (2001)
0082-0082

Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture,
Api Design, and Implementation. Addison-Wesley (2003)

Pistoia, M., Nagaratnam, N., Koved, L., Nadalin, A.: Enterprise Java 2 Security:
Building Secure and Robust J2EE Applications. Addison Wesley (2004)



