
Open Source Fixedpoint Model Checker

Short Manual

Sebastian Mödersheim
IBM Research Lab, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

smo@zurich.ibm.com

November 2, 2009

1 Introduction

The Open Source Fixedpoint Model Checker, OFMC for short, is an extension
and update of the On-the-Fly Model Checker that I developed together with Paul
Hankes Drielsma and Boris Köpf at ETH Zurich [2]. The new version consists
of two modules: the classic module for the bounded verification of security
protocols and the new fixedpoint module for the verification of an unbounded
number of sessions. Either module has its strengths and we therefore integrate
them to obtain the advantages of both.

2 Installation

For the binary distributions, one only needs to ensure that the binary is found
(as the command ofmc) in your favorite shell.1

To compile OFMC from sources, you need the Glasgow Haskell Compiler in
a recent version (6.10.∗ should work) along with the lexer and parser generators
for Haskell, Alex and Happy. All you need is included in the Haskell platform.
Assuming these tools are available as commands ghc, alex, and happy, respec-
tively, you can compile OFMC using the standard make. You can then run a
small set of examples using make test.

3 IF: OFMC’s Native Language

The AVISPA Intermediate Format, IF for short, is the native input language
of OFMC. It is defined in [1]. In a nutshell, IF describes a state transition
system where each state is a set of facts. One specifies an initial state and a
set of transition rules. This gives defines a set of reachable states. Further one
declares a set of attack states and a protocol is considered safe if no attack state

1On Windows, it is recommended to install a Unix-style shell like Cygwin or MinGW first.

1

is reachable. IF is a bit low-level and technical; it is thus recommended to use
the new AnB input language (see next section) to specify the protocol and goals.
Even if that is not entirely possible (because some aspects of a protocol cannot
be formalized in AnB) one may use AnB as a starting point to generate the
core of a specification. Another alternative is the AVISPA HLPSL language [4]
which can be automatically translated to IF by the HLPSL2IF translator of the
AVISPA tool (see www.avispa-project.eu).

OFMC has some extensions and restrictions with respect to the definition
of [1]:

• In OFMC, the initial state may contain variables of type agent (or message
in an untyped model). The meaning of this extension is that all these
variables can be arbitrarily instantiated with agent names (including the
name of the intruder i). Also, one can specify inequalities in the initial
state such as A/=i. This extension allows for the specification of symbolic
sessions section 7.

• OFMC can consider a model of custom symbols, their algebraic properties
and the attached intruder model, using seperate theory files.

• OFMC requires that all transition rules have exactly one state fact on
each side, i.e. correspond to the progress of one agent. We shall remove
this restriction soon.

4 AnB: Alice and Bob notation

AnB is a simple and straightforward language for describing protocols. A detail
description of the semantics is found in [6] and the channel notation is described
in [7].

We illustrate the main points by my personal favorite, the H.530 protocol
displayed in Figure 1.

Section Types In the Types section, we declare the type of all identifiers that
are not builtin. Identifiers that start with an upper-case letter like A and B are
variables. Identifiers that start with a lower-case letter like s are constants.
The most general type is Message, all other types are (disjoint) subtypes of
message. Note that one can consider untyped protocol models (to detect type-
flaw attacks), but this is done by invoking OFMC with the option -untyped to
make it ignore the type information. The untyped analysis is only possible in
the classic module, currently. Thus we need the specification of all types.

Roles and Honest Roles In the example, we have three protocol roles, where
the first two can be played by any agent in concrete protocol runs; more in detail,
the variables A and B are instantiated during a particular protocol run with a
constant of type Agent, this includes the intruder i. Note that we do not need
to specify the concrete set of agents that populate our universe. The third role

2

Protocol: H530

Types: Agent A,B,s;
Number X,Y,g,M,t1,t2,t3,t4,t5;
Function sk,mac

Knowledge: A: A,s,sk(A,s),B,g,mac,t1,t2,t3,t4,t5;
B: B,s,sk(B,s),g,mac,t1,t2,t3,t4,t5;
s: A,B,s,sk,g,mac,t1,t2,t3,t4,t5

Actions:
A->B: A,B,exp(g,X),mac(sk(A,s),t1,A,B,exp(g,X))
B->s: A,B,exp(g,X),mac(sk(A,s),t1,A,B,exp(g,X)),

B,exp(g,X),exp(g,Y),
mac(sk(B,s),t2,A,B,exp(g,X),mac(sk(A,s),t1,A,B,exp(g,X)),
B,exp(g,X),exp(g,Y))

s->B: B,A,mac(sk(A,s),t3,B,exp(g,X),exp(g,Y)),
mac(sk(B,s),t4,B,A,mac(sk(A,s),t3,B,exp(g,X),exp(g,Y)))

B->A: B,A,exp(g,Y),mac(sk(A,s),t3,B,exp(g,X),exp(g,Y)),
mac(exp(exp(g,X),Y),t5,B,A,exp(g,Y),mac(sk(A,s),t3,B,exp(g,X),exp(g,Y)))

A->B: {|M|}exp(exp(g,X),Y)

Goals:
B authenticates A on M
M secret between A,B

Figure 1: AnB specification of the H.530 protocol.

3

s cannot be instantiated and is rather played by one honest server named s in
all sessions. Parties that act as a “trusted” third party (actually honest third
party) are specified as constants like this.

Functions In the example we have declared sk and mac to be functions. Note
that such function symbols are always unary functions on messages; by using
the pair operator on the arguments we can, however, use them just like any n-
ary function. By default, no further algebraic properties are attached to them.
E.g. in this case the long-term shared key sk(A,B) of agents A and B differs
from the sk(B,A).2 The mac function symbol is used here to model message
authentication codes, i.e. a keyed hash function: a mac mac(K,M) can only be
generated and verified knowing key K and message M, and one cannot recover M
from mac(K,M).

Section Knowledge For each role of the protocol, we specify a set of messages
that the role knows before the execution of the protocol. In this case the agents
know themselves, the server, the shared key with the server, and all the public
constants and function symbols. Note that only the honest server knows the
entire key-table sk,3 while everybody may know the function mac.

An important condition is that the intruder knowledge may contain only
variables of type agent (that will be instantiated in concrete protocol runs with
constant agent names). All other variables, like the Diffie-Hellman exponents
X and Y stand for values that will be freshly created during the execution of
the protocol, namely by the first person that sends the first message containing
them. In this case, thus, X is generated by A and Y is generated by B.

Section Actions The main part of the specification is the exchange of mes-
sages. Each receiver is the sender of the next message (if there is one). In a
nutshell, the translator from AnB to IF will generate for each role one “pro-
gram” from this exchange. In this translation we check that each message can
be constructed by the respective agent from the knowledge that he or she has
at that point, i.e. the initial knowledge, the received messages, and the val-
ues that the agent has freshly created. If a message cannot be constructed the
translation will refuse the specification as not executable and give hints to what
message cannot be constructed. The translator can automatically handle con-
struction module properties of exponentiation and exclusive or. Note that the
classic OFMC module allows for custom algebraic theories, the AnB translator
has only these two algebraic operators in (i.e. a -theory specification has no
effect on the AnB translator).

We note that scryptkm represents the symmetric encryption of message m
with key k and cryptkm the asymmetric encryption. Concatenation is by default
not associative and we interpret a, b, c as pairapairbc (right-associative).

2In fact using a pair of shared keys, one for each direction of a communication, is a good
idea to avoid reflection attacks.

3In fact, one may alternatively give the server only sk(A,s) and sk(B,s).

4

Channel notation While the default is the insecure communication medium,
we may alternatively also the following kinds of channels (for details see [7]):

• A •→B : M is an authentic channel,

• A→•B : M is a confidential channel, and

• A •→•B : M is a secure channel.

Each of them may be used in a variant where sender or receiver is put in square
brackets to indicate a pseudonymous channel, e.g. [A] •→•B : M would repre-
sent a secure channel where the sender is not authenticated; the point is that in
several transmissions, [A] is guaranteed to be the same (but unauthenticated)
entity. This is the kind of channel that a TLS connection without client au-
thentication provides.

Section Goals There are several ways to specify goals right now:

• The standard authentication goal is B authenticates A on M. This cor-
responds to Lowe’s injective agreement [5].

• A weaker variants is B weakly authenticates A on M where replay is
not considered as an attack. This corresponds to Lowe’s non-injective
agreement.

• M secret between A,B,C is the standard secrecy goal.

• There is another notation for goals using the channel notation:

– A •→B : M for B authenticates A on M.

– A→•B : M for a variant of M secret between A,B: in fact, as soon
as A knows M , it is considered a secret and what B receives is not
declared as a secret.

– A •→•B : M for both A •→B : M and A→•B : M .

• For the fixedpoint module we can currently only support two kinds of
goals:

– A→•B : M (i.e not the secret between variant).

– BweaklyauthenticatesAonM where M must be a freshly created
value of A.

Also note that the channel notation of goals allows for [A] •→•B : M , e.g. as
the goal of TLS without client authentication, but here we need to guess what
the “pseudonym” of the client actually is (in TLS it is the pre-master secret
as explained in the extended version of [7]). This mechanism is not perfect yet
(will be improved) and for these goals we thus advise users to check the IF file
whether the translation is appropriate.

5

5 Classic and Fixedpoint Module

Classic Module The classic OFMC performs verification for a bounded num-
ber of sesssions, i.e. the actions of honest agents are bounded. The intruder
can in this case be unbounded (generate arbitrarily complex messages from his
knowledge and send them to any agent) and we can handle algebraic properties
and many other features.

Iterative Bounded Sessions The AnB translator can generate IF files for
a given number of symbolic sessions, i.e. a set of uninstantiated agents at the
initial state of the protocol execution, one agent for each of the roles. By
default, we run the classic OFMC with the following configuration: we begin
the verification for 1 session. If an attack is found, we stop and print the attack
trace. If no attack is found, we increase the number of sessions and start the
verification again. This process is repeated until an attack is found or the user
cancels the process. In other words, for a correct protocol, this will never stop.

Note that this iteration is only possible for AnB files since IF files have a
fixed set of sessions built-in for the initial state.4

The Fixedpint Module The fixedpoint module is a novel module that uses
abstract interpretation and over-approximation to verify protocols, similar to
tools like ProVerif and TA4SP. This allows for the verification without limiting
the number of sessions, but we must assume a strictly typed model (thus bound-
ing the intruder) to ensure termination, we need to check in a free algebra, and
also the fixedpoint approach is not applicable to protocols that use negative
conditions on transitions (which can be specified in IF but not in AnB). More-
over, when the fixed-point module detects an attack, this may be caused by
an over-approximation and is not necessarily an attack to the original protocol
description. In this case, the fixedpoint module automatically refines the ab-
straction and restart the verification process. This is repeated until the protocol
is either verified or the strategy of OFMC sees no further room for refinement.
In the latter case, the fixedpoint verification fails (which does not imply that
the protocol is unsafe) and the abstract attack of the last refinement round is
presented.

Both Modules in Parallel To combine the strengths of both of approaches,
we have chosen to integrate them in the following way:

• Both modules are started on the problem in parallel.

• If the classic module finds and attack, the classic module wins and the
attack trace is printed (the fixedpoint verification is killed).

• If the fixedpoint module verifies the protocol, the fixedpoint module wins
and the classic module verification process is killed.

4It is actually possible to declare initialization theories that create new state facts, but the
classic OFMC does not allow that currently.

6

• In all other cases we have a tie: we can verify the protocol only for a
bounded number of sessions and it may be correct in general, but we
cannot tell.

This setup follows the idea “first definitive answer counts”. However note
that it is very well possible that the fixedpoint module can verify a protocol and
the classic module finds an attack:

• The fixedpoint module considers only weak authentication and secrecy.
You may specify strong authentication goals that are only considered in
the classic module.

• The fixedpoint module works in a strictly typed model, and the classic
module may find type-flaw attacks.

• The fixedpoint module works in the free algebra, while the classic module
considers algebraic properties.

• There may be bugs.

For all these reasons, we suggest that one may ensure that both modes have
analyzed the protocol for a sufficient number of time. You can always choose to
run a single module with the options -classic and -fp.

6 Isabelle Proofs

Using the new fixedpoint module, we can generate proofs for the interactive
theorem prover Isabelle [3]. The idea is the following. The protocol model of
OFMC and similar complex verification tools may suffer from implementation
bugs so that in the worst case the tool could accept some incorrect protocols as
being correct. These risks of errors are also present, but considerably smaller,
when using an LCF-style theorem prover like Isabelle. The interactive security
proof, however, requires a lot of expertise and time.

The new connection Isabelle/OFMC combines the advantages of both worlds
by using the representation of the over-approximated search space of OFMC’s
fixedpoint module as a “proof idea” in Isabelle. Thus, we devise proof tactics
for Isabelle that generate the correctness proof of the protocol from the output
of OFMC. In the worst case, these tactics fail to construct a proof, namely when
the representation of the search space is for some reason incorrect. However,
when they succeed, the correctness only relies on the basic model and the Isabelle
core.

When the verification with the fixedpoint module is successfull, we can use
the flag -ot Isa to generate a “fixedpoint” file from which Isabelle/OFMC can
generate the Isabelle proof. Isabelle/OFMC is still in the stage of a developer
version. It can also be downloaded from the AVANTSSAR homepage (you need
to obtain also an installation of Isabelle

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

7

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

7 Symbolic Sessions

A scenario is a finite number of sessions, where a session is an instantiation of
all protocol roles agent names. The number of scenarios grows exponentially in
the number of sessions (for finite scenarios, one can bound the number of agent
names). In HLPSL, the user must specify each scenario manually and run it
through the AVISPA tool, in order to check that the protocol has no attacks for
a given number of sessions.

OFMC allows one to specify symbolic sessions which involves specifying just
one scenario – with agent names replaced by variables. During the search for
an attack, OFMC instantiates the agent names when necessary (lazily).

In the example file of the SRP protocol, we have two roles User and Host, and
we have specified the following symbolic scenario (where User, User2, Host,
and Host2 are of type Agent):

initial_state init1 :=

...
state_srp_user(User,Host,...)
state_srp_host(Host,...)
state_srp_user(User2,Host2,...)
state_srp_host(Host2,...)

& User/=Host
& Host/=i
& User /=Host2
& User2/=Host2
& User2/=Host
& Host2/=i

This specifies two sessions, one between User and Host, and one between
User2 and Host2. Observe that in this specification the Host is independent
from the name of the client, as the Host will accept communication from ev-
eryone. Using the inequalities, we can further require that hosts and users are
disjoint (i.e. no user in one session can be a host in another session) and that all
hosts are honest (unequal intruder). Such a specification is not mandatory, but
some protocols require that certain roles can only be played by honest users, for
instance.

8 Session Compilation

Session compilation is a feature that has been supported by OFMC for quite a
while, but has lead to many questions, hence this extra section.

When specifying the option -sessco, OFMC will first perform a search
with a passive intruder to check whether the honest agents can execute the
protocol, and then give the intruder the knowledge of some “normal” session

8

between honest agents. In the case certain steps cannot be executed by any
honest agent, OFMC reports that the protocol is not executable and stops.
If the executability check is successful, then the normal search with an active
intruder is started, with the only difference that the intruder initially knows all
the messages exchanged by the honest agents in the passive intruder phase.

This is helpful both for quickly finding replay attacks (rather than specifying
lots of parallel sessions), but also for checking the sanity of the specification,
namely that at least the ‘legal execution’ of the protocol is possible.

We recommend to check each protocol specification with option sessco first,
to see if it is executable in the model of OFMC. If OFMC replies that it is
not the case, then one should try to simulate the legal execution (the way the
protocol was meant to be executed) using the path option. At some point,
OFMC will not offer the next step of the legal execution, and that’s the first
point where probably a mistake in the rules has occurred. Indeed such debugging
of specifications is not very convenient, and we hope to offer you soon a more
improved option to inspect protocol specifications.

If one role can loop (i.e. remain in the same control state forever and make
infinitely many steps), sessco is not possible (and OFMC aborts with an error
message), but then the search in OFMC does not terminate either, unless you
specify a depth bound for the search.

In any case, when it is not possible to establish executability of the protocol,
one should still check the protocol without the sessco option. In this case, one
can manually perform the session compilation by adding to the initial intruder
knowledge the messages of one run of the protocol with the fresh data replaced
by fresh constants.

References

[1] AVISPA. Deliverable 2.3: The Intermediate Format. Available at www.
avispa-project.org, 2003.

[2] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. International Journal of Information Security,
4(3):181–208, 2005.

[3] A. Brucker and S. Mödersheim. Integrating automated and interactive pro-
tocol verification. In FAST 2009. To appear, extended version available as
IBM Research Report RZ3750.

[4] Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani,
S. Mödersheim, and L. Vigneron. A High Level Protocol Specification Lan-
guage for Industrial Security-Sensitive Protocols, volume 180 of Automated
Software Engineering, pages 193–205. Austrian Computer Society, Austria,
September 2004.

[5] G. Lowe. A hierarchy of authentication specifications. In Proceedings of
CSFW 10, pages 31–43. IEEE Computer Society Press, 1997.

9

www.avispa-project.org
www.avispa-project.org

[6] S. Mödersheim. Algebraic Properties in Alice and Bob Notation. In
Proc. Ares’09, Full version: T. Rep. RZ3709, IBM Zurich Research Lab,
2008, domino.research.ibm.com/library/cyberdig.nsf.

[7] S. Mödersheim and L. Viganò. Secure Pseudonymous Channels. In ES-
ORICS 2009, LNCS 5789, 2009.

10

domino.research.ibm.com/library/cyberdig.nsf

	Introduction
	Installation
	IF: OFMC's Native Language
	AnB: Alice and Bob notation
	Classic and Fixedpoint Module
	Isabelle Proofs
	Symbolic Sessions
	Session Compilation

